设n阶行列式中有多于n2-n个元素为零.证明这个行列式为零

 我来答
帐号已注销
2021-08-17 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:161万
展开全部

∵有n^2-n个以上元素为零

∴非零的元素个数<n

∴必有一行全为零

所以此行列式等于零。

n阶行列式等于所有取自不同行不同列的n个元素的乘积的代数和,逆序数为偶数时带正号,逆序数为奇数时带负号,共有n!项。

性质

①行列式A中某行(或列)用同一数k乘,其结果等于kA。

②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

教育小百科达人
2020-10-18 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:463万
展开全部

∵有n^2-n个以上元素为零

∴非零的元素个数<n

∴必有一行全为零

所以此行列式等于零。

n阶行列式等于所有取自不同行不同列的n个元素的乘积的代数和,逆序数为偶数时带正号,逆序数为奇数时带负号,共有n!项。



扩展资料:

把行列式中某一行(列)的所有元素都乘以一个数K,等于用数K乘以行列式。如果行列式的某行(列)的各元素是两个元素之和,那么这个行列式等于两个行列式的和。

 如果行列式中有两行(列)相同,那么行列式为零。(所谓两行(列)相同就是说两行(列)的对应元素都相等)如果行列式中两行(列)成比例,那么行列式为零。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hxzhu66
高粉答主

推荐于2017-11-21 · 醉心答题,欢迎关注
知道大有可为答主
回答量:2.6万
采纳率:96%
帮助的人:1.1亿
展开全部
你好!n阶行列式一共有n^2个元素,若有多于n^2-n个元素为零,则非零元素少于n个,从而至少有一行元素全是0,所以行列式为0。经济数学团队帮你解答,请及时采纳。谢谢!
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
晁松兰展词
2020-03-02 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:25%
帮助的人:721万
展开全部
证明:根据行列式定义,det(a)=∑p(1,2,...,n)a1*a2*...*an,这里p(1,2,...,n)代表1,2...,n的一个置换(百度打公式不方便,你应该能理解的),由于等于零的元素个数大于n2
-
n,那么只有小于n个数不等于零,于是从上公式推断求和号中每一项都是零,从而行列式为零。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式