求教一道高数题,关于广义积分的
证明:设函数在区间[a,+∞)上单调减,并且广义积分∫(a到+∞)f(x)dx收敛,那么lim(x→+∞)xf(x)=0....
证明:设函数在区间[a,+∞)上单调减,并且广义积分∫(a到+∞)f(x)dx收敛,那么lim(x→+∞)xf(x)=0.
展开
展开全部
首先由f(x)单调减, 及∫{a,+∞} f(x)dx收敛, 有f(x) ≥ 0.
根据Cauchy收敛准则, 易得lim{x → +∞} ∫{x/2,x} f(t)dt = 0.
又f(x)单调递减, ∫{x/2,x} f(t)dt ≥ ∫{x/2,x} f(x)dt = x·f(x)/2.
于是0 ≤ lim{x → +∞} x·f(x) ≤ 2·lim{x → +∞} ∫{x/2,x} f(t)dt = 0.
即lim{x → +∞} x·f(x) = 0.
根据Cauchy收敛准则, 易得lim{x → +∞} ∫{x/2,x} f(t)dt = 0.
又f(x)单调递减, ∫{x/2,x} f(t)dt ≥ ∫{x/2,x} f(x)dt = x·f(x)/2.
于是0 ≤ lim{x → +∞} x·f(x) ≤ 2·lim{x → +∞} ∫{x/2,x} f(t)dt = 0.
即lim{x → +∞} x·f(x) = 0.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |