大数学家高斯在上学读书时曾经研究过这样一个问题1+2+3+…+10=?经过研究,这个问题一般性的结论是1+2+3+

大数学家高斯在上学读书时曾经研究过这样一个问题1+2+3+…+10=?经过研究,这个问题一般性的结论是1+2+3+…+n=1/2n(n+1),其中n是正整数,现在我们来研... 大数学家高斯在上学读书时曾经研究过这样一个问题1+2+3+…+10=?经过研究,这个问题一般性的结论是1+2+3+…+n=1/2n(n+1),其中n是正整数,现在我们来研究一个类似的问题:1×2+2×3+…n(n+1)=?
观察下面三个特殊的等式:
1×2=1/3(1×2×3-0×1×2)
2×3=1/3(2×3×4-1×2×3)
3×4=1/3(3×4×5-2×3×4)
将这三个等式的两边相加,可以得到1×2+2×3+3×4=1/3×3×4×5=20
读完这段材料,请你计算:
(1)1×2+2×3+…+10×11
(2)1×2+2×3+…+n(n+1)
(3)1×2×3+2×3×4+…n(n+1)(n+2)
(1)和(3)要过程
展开
德昆纶96
2013-05-30
知道答主
回答量:10
采纳率:0%
帮助的人:8.8万
展开全部
(1)=1/3(10*11*12)=440
(2)=1/3[n(n+1)(n+2)]
(3)=1/4n(n+1)(n+2)(n+3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式