可降阶的二阶微分方程问题:设函数u=f(r),r=√(x^2+y^2)在r>0内满足方程з^2u/зx^2+з^2u/зy^2=0,其中f

可降阶的二阶微分方程问题:设函数u=f(r),r=√(x^2+y^2)在r>0内满足方程з^2u/зx^2+з^2u/зy^2=0,其中f(r)二阶可导,求f(r)...... 可降阶的二阶微分方程问题:设函数u=f(r),r=√(x^2+y^2)在r>0内满足方程з^2u/зx^2+з^2u/зy^2=0,其中f(r)二阶可导,求f(r)...答案是f(r)=c1lnr+c2,求过程啊,急~~~~~~~~~~~~~~~~~~·没财富了,求大神帮忙啊 展开
wingwf2000
2013-05-29 · TA获得超过1万个赞
知道大有可为答主
回答量:5889
采纳率:33%
帮助的人:1789万
展开全部
laplace方程,将直角坐标的微分方程转化为极坐标的微分方程即可
追问
没学过啊,能不能用齐次线性微分方程之类的方法做啊!
追答
f是函数,ə是求偏导符号

直角坐标下的拉普拉斯方程为:(ə²/əx²)+(ə²/əy²)f=0
极坐标下的拉普拉斯方程:(ə²/ər²)+(1/r)(ə/ər)+(1/r²)(ə²/ə²θ)f=0
由于极坐标下f只是r的函数,与θ无关,所以偏导数可转化为普通导数
所以(ə²/ər²)+(1/r)(ə/ər)+(1/r²)(ə²/ə²θ)f=0变为[(ə²/ər²)+(1/r)(ə/ər)]f=0
也就是f''+f'/r=0,这里的求导是对r求导,
所以 。。。。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式