高二数学3-2 5
若(X-1)^n的展开式中只有第十项的二项式系数最大,1.求展开式中系数最大的项2.设(2X-1)^n=a0+a1x+a2x^2+...+anx^n,求a0+a2+a4....
若(X-1)^n 的展开式中只有第十项的二项式系数最大,
1. 求展开式中系数最大的项
2. 设(2X-1)^n=a0+a1x+a2x^2+...+anx^n,求a0+a2+a4...+an
第二问a旁边的0.1.2.n.2.4是右下角的角标
要过程 急 谢谢 展开
1. 求展开式中系数最大的项
2. 设(2X-1)^n=a0+a1x+a2x^2+...+anx^n,求a0+a2+a4...+an
第二问a旁边的0.1.2.n.2.4是右下角的角标
要过程 急 谢谢 展开
展开全部
(1)第10项的二项式系数为C(n,9),仅它最大,所以n=18.
T(r+1)=C(18,r)*x^(18-r)(-1)^r,系数最大r=8或10,这两项为C(18,8)x^10和C(18,10)x^8
(2)令x=1得a0+a1+a2+a3+...+an=1
令x=-1得a0-a1+a2-a3+...+an=(-3)^n
相减得2(a0+a2+a4+...+an)=1-(-3)^n
所以a0+a2+a4+...+an=[1-(-3)^n]/2.
注:n为偶数
n为奇数,方法相同.
T(r+1)=C(18,r)*x^(18-r)(-1)^r,系数最大r=8或10,这两项为C(18,8)x^10和C(18,10)x^8
(2)令x=1得a0+a1+a2+a3+...+an=1
令x=-1得a0-a1+a2-a3+...+an=(-3)^n
相减得2(a0+a2+a4+...+an)=1-(-3)^n
所以a0+a2+a4+...+an=[1-(-3)^n]/2.
注:n为偶数
n为奇数,方法相同.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(x-1)^n的展开式中,只有第十项的二项式系数最大,则:
展开式一共有19项,得:n=18
1、展开式中,系数最大的项是第十一项或者第九项;
2、以x=1代入,得:
a0+a1+a2+…+a18=1
以x=-1代入,得:
a0-a1+a2-a3+…-a17+a18=(-3)^18
两个方程相加,得:
a0+a2+a4+…+a18=[1+(-3)^18]/2
展开式一共有19项,得:n=18
1、展开式中,系数最大的项是第十一项或者第九项;
2、以x=1代入,得:
a0+a1+a2+…+a18=1
以x=-1代入,得:
a0-a1+a2-a3+…-a17+a18=(-3)^18
两个方程相加,得:
a0+a2+a4+…+a18=[1+(-3)^18]/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1)
(X-1)^n 的展开式中只有第十项的二项式系数最大,
就是只有C(9,n)最大,n=18
C(9,18)=48620
2)
当x=1和x=-1时展开相加是a0+a2+a4...+an的2倍
a0+a2+a4...+an=((2*1-1)^n+(2*(-1)-1)^n)/2=(1+(-3)^n)/2 =3^18 /2 +1/2
(X-1)^n 的展开式中只有第十项的二项式系数最大,
就是只有C(9,n)最大,n=18
C(9,18)=48620
2)
当x=1和x=-1时展开相加是a0+a2+a4...+an的2倍
a0+a2+a4...+an=((2*1-1)^n+(2*(-1)-1)^n)/2=(1+(-3)^n)/2 =3^18 /2 +1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因说 “只有” “第十项” “二项式系数” 最大,由杨辉三角可知 n=18。 展开后,可知第十项系数为负,则第九项和十一项系数为正且相等,即这两项系数最大
f(x)=(2X-1)^n=a0+a1x+a2x^2+...+anx^n。 f(1)=a0+a1+a2...+an,f(-1)=a0-a1+a2...+an
f(1)-f(-1)=2(a0+a2+a4...+an)。则:a0+a2+a4...+an=[f(1)-f(-1)]/2 = 1/2 - (-3)^n / 2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询