求解一道关于数列 函数 不等式的题目
函数f(x)=x-sinx,数列an满足:0<a1<1,a(n+1)=f(a(n)),n=1,2,3,4求证:(1)0<a(n+1)<an<1(2)a(n+1)<1/6(...
函数f(x)=x-sinx,数列an满足:0<a1<1,a(n+1)=f(a(n)),n=1,2,3,4
求证:(1)0<a(n+1)<an<1
(2)a(n+1)<1/6(an^3)
如何用数学归纳法证明,详细一点,谢谢 展开
求证:(1)0<a(n+1)<an<1
(2)a(n+1)<1/6(an^3)
如何用数学归纳法证明,详细一点,谢谢 展开
2013-05-30
展开全部
(1)当x>0时0<sinx<x,
0<a1,
假设0<ak,那么
a<k+1>=ak-sin(ak)>0,
∴对n∈N+,都有an>0.
a<n+1>-an=-sin(an)<0,
∴a<n+1><an<=a1<1,
综上,0<a(n+1)<an<1.
(2)设g(x)=f(x)-(1/6)x^3,x>0,则
g'(x)=1-cosx-(1/2)x^
=2[sin(x/2)]^-(1/2)x^
<2(x/2)^-(1/2)x^=0,
∴g(x)↓,
g(x)<g(0)=0,
∴f(x)<(1/6)x^3,
∴a<n+1>=f(an)<(1/6)(an)^3.
0<a1,
假设0<ak,那么
a<k+1>=ak-sin(ak)>0,
∴对n∈N+,都有an>0.
a<n+1>-an=-sin(an)<0,
∴a<n+1><an<=a1<1,
综上,0<a(n+1)<an<1.
(2)设g(x)=f(x)-(1/6)x^3,x>0,则
g'(x)=1-cosx-(1/2)x^
=2[sin(x/2)]^-(1/2)x^
<2(x/2)^-(1/2)x^=0,
∴g(x)↓,
g(x)<g(0)=0,
∴f(x)<(1/6)x^3,
∴a<n+1>=f(an)<(1/6)(an)^3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询