已知:如图,在△ABC中,角ABC和角ACB的角平分线相交于点I。求证:角BIC=90°+1/2角A
展开全部
∵BI平分∠ABC, ∴∠ABI=∠DBI=1/2∠ABC
∵CI平分∠ACB, ∴∠ACI=∠DCI=1/2∠ACB.
∠BID=∠BAI+∠ABI=∠BAI+1/2∠ABC;
∠CID=∠CAI+∠ACI=∠CAI+1/2∠ACB;
而∠BAI+∠CAI=∠A,
∴∠BIC=∠BID+∠CID
=∠BAI+1/2∠ABC+∠CAI+1/2∠ACB
=∠A+1/2∠ABC+1/2∠ACB,
=(1/2∠A+1/2∠A)+1/2∠ABC+1/2∠ACB
=(1/2∠A+1/2∠ABC+1/2∠ACB)+1/2∠A
=1/2(∠A+∠ABC+∠ACB)+1/2∠A.......(因为三角形三内角之和=180°)
=1/2(180°)+1/2∠A
=90°+1/2∠A.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询