数学学习方法
老师您好,我是西南地区一所国家级示范高中的学生,但是我是刚过录取线进的这个学校,同学都比我优秀,我的成绩一直也不理想,老师大多数讲一些难题,长期以来我数学成绩一直不理想1...
老师您好,我是西南地区一所国家级示范高中的学生,但是我是刚过录取线进的这个学校,同学都比我优秀,我的成绩一直也不理想,老师大多数讲一些难题,长期以来我数学成绩一直不理想150的题最好考过79最低53 请老师教我如何利用课余时间自学数学,谢谢老师。
展开
5个回答
2013-05-30
展开全部
现代教育最重要的特征就是高扬人的主体性,追求个人的全面发展,以期取得最大的效益和最高的发展,笔者多年担任重点班的数学教师与班主任,学生大多应届初中生中的佼佼者,他们有浓厚的学习兴趣、超常的学习能力、勇于创新的精神,与一般学生相比,在学习能力上有得天独厚的优势,面对这一特殊的群体,现有的教材肯定无法满足其强烈的求知欲,传统的教法也已不利于其主动探究,不能适应其超常发展,教师更应该注重培养学生的思维,特别是培养学生思维的深刻性和独创性,要求学生能深入思考问题,善于概括归类,善于抓住事物的本质和规律。
目录
图书信息
内容简介
图书目录
编辑本段图书信息
书 名: 更高更妙的高中数学思想与方法
作 者:蔡小雄
出版社: 浙江大学出版社
出版时间: 2009年09月
ISBN: 9787308069939
开本: 16开
定价: 28.00 元
编辑本段内容简介
《更高更妙的高中数学思想与方法》内容简介:现代教育最重要的特征就是高扬人的主体性,追求个人的全面发展,以期取得最大的效益和最高的发展,笔者在杭州二中有幸连续多年担任重点班的数学教师与班主任,这批学生大多是浙江省各个地区应届初中生中的佼佼者,他们有浓厚的学习兴趣、超常的学习能力、顽强的学习毅力、勇于创新的精神,与一般学生相比,在学习基础、学习能力上存在得天独厚的优势,面对这一特殊的群体,现有的教材肯定无法满足其强烈的求知欲,传统的教法也已不利于其主动探究,不能适应其超常发展,如同《伯乐相马》故事里所描述的千里马,千里马的习性与众不同,它跑得快,但食量大,如果按照普通马的食量喂养,它可能连普通马的能力都发挥不出来,但如果给予特殊的照顾,它能够日行千里,对于资优生,书本上的基础知识基本上是过关的,教师更应该注重培养学生的思维,特别是培养学生思维的深刻性和独创性,要求学生能深入思考问题,善于概括归类,善于抓住事物的本质和规律。因此,在本书的创意过程中,笔者力求形成的“亮点”有:
1.高屋建瓴——重视数学思想的渗透
在数学学习中,单纯靠题海战术盲目操练是很难获得理想成绩的,我们必须将自己置身于解题的更高境界。高中数学学习的更高境界主要是指运用数学思想武装自已,并有效地指导解题。数学《考试大纲》中指出:“数学思想和方法是数学知识在更高层次的抽象和概括。它蕴涵在数学知识的发生、发展和应用的过程中。”如果说数学知识是数学内容,可用文字和符号来记录和描述,那么数学思想则是数学意识,只能领会、运用,属于思维的范畴,用以对数学问题的认识、处理和解决。
2.独辟蹊径——将数学竞赛知识与高考数学有机结合起来
高考数学命题遵循考试大纲和教学大纲,体现“基础知识全面考,主干内容重点考,热点知识反复考,冷点知识有时考”的命题原则。从解答策略上来说,高考一般淡化解题中的特殊技巧,比较注重在解题的通性通法上精心设计。但是认真分析近几年的高考试题,尤其是压轴题,我们不难发现,有很多问题又很难用“通性通法”顺利解决。因此,在平时学习中,对于学有余力的同学来说,有必要适当掌握一些“竞赛”的方法或技巧,只有这样,才能真正在高考中做到处变不惊,游刃有余。
3.一网打尽——收集整理参考了近五年所有的高考原题
对近五年来高考试卷及全国各重点中学最后一次模拟考试中出现的压轴题进行了系统整理,精选其中最典型的问题,从背景、方法与拓展等方面进行认真分析。另外,书中也收集了笔者参加浙江省会考命题,浙江省数学竞赛夏令营命题,杭州市统测命题时编写的习题资料。
4.来源实践——所有材料均经过优秀学生认真检验
本书大多数内容是在原浙江省理科创新实验班课堂实践的基础上发展与完善的。值得一提的是,笔者曾将书中内容给杭州二中2006届重点班学生作为高考复习专题资料,取得较好成效,当年该班高考数学平均分为143分,全班有50%的同学考取清华、北大,其中卢毅同学为浙江省高考理科第一名。因此,对于高三以及高一、高二的优秀学生,这本书可以直接作为复习的教材使用。
编辑本段图书目录
第一章 更高更妙的数学解题策略
1.1 夯实基础知识,争取“拾级而上
1.2 防止思维定式,实现“移花接木
1.3 灵活运用策略,尝试“借石攻玉
1.3.1 归纳猜想
1.3.2 类比迁移
1.3.3 进退互化
1.3.4 整体处理
1.3.5 正难则反
1.4 关注临界问题,掌握“秘密武器
1.4.1 临界法则
1.4.2 临界问题
1.4.3 临界方法
1.5 完善思维过程,达到“水到渠成
第二章 善于用数学思想武装自己
2.1 函数与方程思想
2.1.1 显化函数关系
2.1.2 转换函数关系
2.1.3 构造函数关系
2.1.4 转换方程形式
2.1.5 构造方程形式
2.1.6 联用函数与方程思想
2.2 分类讨论思想
2.2.1 计数问题与概率中的分类讨论
2.2.2 函数中的分类讨论
2.2.3 数列中的分类讨论
2.2.4 不等式中的分类讨论
2.2.5 解析几何中的分类讨论
2.3 数形结合思想
2.3.1 数形结合在集合中的应用
2.3.2 数形结合在函数中的应用
2.3.3 数形结合在不等式中的应用
2.3.4 数形结合在数列中的应用
2.3.5 数形结合在向量中的应用
2.3.6 数形结合在解析几何中的应用
2.3.7 数形结合在立体几何中的应用
2.4 化归与转化思想
2.4.1 变量与变量的转化
2.4.2 高维与低维的转化
2.4.3 特殊与一般的转化
2.4.4 局部与整体的转化
2.4.5 化归与转化的综合运用
2.5 综合运用数学思想解题
好题新题精选(一)
第三章 高考压轴题热点题型透析
3.1 函数综合问题
3.1.1 二次函数综合
3.1.2 高次函数综合
3.1.3 分式函数综合
3.1.4 抽象函数综合
3.1.5 函数综合
好题新题精选(二)
3.2 导数综合问题
好题新题精选(三)
3.3 数列综合问题
3.3.1 数列性质综合
3.3.2 函数与数列
3.3.3 数列不等式
3.3.4 点列问题
好题新题精选(四)
3.4 解析几何综合问题
3.4.1 圆综合
3.4.2 椭圆综合
3.4.3 双曲线综合
3.4.4 抛物线综合
好题新题精选(五)
3.5 新颖性问题
好题新题精选(六)
第四章 用竞赛策略优化高考解题
4.1 熟悉递推方法
4.1.1 累加累乘法
4.1.2 待定系数法
4.1.3 不动点法
4.1.4 阶差法
4.1.5 直接代换法
4.1.6 变形转化法
4.1 _7数学归纳法
好题新题精选(七)
4.2 了解放缩技巧
4.2.1 直接放缩
4.2.2 裂项放缩
4.2.3 并项放缩
4.2.4 加强放缩
好题新题精选(八)
4.3 掌握重要不等式
4.3.1 均值不等式
4.3.2 柯西不等式
4.3.3 排序不等式
好题新题精选(九)
4.4 运用参数与参数方程法
好题新题精选(十)
参考文献
目录
图书信息
内容简介
图书目录
编辑本段图书信息
书 名: 更高更妙的高中数学思想与方法
作 者:蔡小雄
出版社: 浙江大学出版社
出版时间: 2009年09月
ISBN: 9787308069939
开本: 16开
定价: 28.00 元
编辑本段内容简介
《更高更妙的高中数学思想与方法》内容简介:现代教育最重要的特征就是高扬人的主体性,追求个人的全面发展,以期取得最大的效益和最高的发展,笔者在杭州二中有幸连续多年担任重点班的数学教师与班主任,这批学生大多是浙江省各个地区应届初中生中的佼佼者,他们有浓厚的学习兴趣、超常的学习能力、顽强的学习毅力、勇于创新的精神,与一般学生相比,在学习基础、学习能力上存在得天独厚的优势,面对这一特殊的群体,现有的教材肯定无法满足其强烈的求知欲,传统的教法也已不利于其主动探究,不能适应其超常发展,如同《伯乐相马》故事里所描述的千里马,千里马的习性与众不同,它跑得快,但食量大,如果按照普通马的食量喂养,它可能连普通马的能力都发挥不出来,但如果给予特殊的照顾,它能够日行千里,对于资优生,书本上的基础知识基本上是过关的,教师更应该注重培养学生的思维,特别是培养学生思维的深刻性和独创性,要求学生能深入思考问题,善于概括归类,善于抓住事物的本质和规律。因此,在本书的创意过程中,笔者力求形成的“亮点”有:
1.高屋建瓴——重视数学思想的渗透
在数学学习中,单纯靠题海战术盲目操练是很难获得理想成绩的,我们必须将自己置身于解题的更高境界。高中数学学习的更高境界主要是指运用数学思想武装自已,并有效地指导解题。数学《考试大纲》中指出:“数学思想和方法是数学知识在更高层次的抽象和概括。它蕴涵在数学知识的发生、发展和应用的过程中。”如果说数学知识是数学内容,可用文字和符号来记录和描述,那么数学思想则是数学意识,只能领会、运用,属于思维的范畴,用以对数学问题的认识、处理和解决。
2.独辟蹊径——将数学竞赛知识与高考数学有机结合起来
高考数学命题遵循考试大纲和教学大纲,体现“基础知识全面考,主干内容重点考,热点知识反复考,冷点知识有时考”的命题原则。从解答策略上来说,高考一般淡化解题中的特殊技巧,比较注重在解题的通性通法上精心设计。但是认真分析近几年的高考试题,尤其是压轴题,我们不难发现,有很多问题又很难用“通性通法”顺利解决。因此,在平时学习中,对于学有余力的同学来说,有必要适当掌握一些“竞赛”的方法或技巧,只有这样,才能真正在高考中做到处变不惊,游刃有余。
3.一网打尽——收集整理参考了近五年所有的高考原题
对近五年来高考试卷及全国各重点中学最后一次模拟考试中出现的压轴题进行了系统整理,精选其中最典型的问题,从背景、方法与拓展等方面进行认真分析。另外,书中也收集了笔者参加浙江省会考命题,浙江省数学竞赛夏令营命题,杭州市统测命题时编写的习题资料。
4.来源实践——所有材料均经过优秀学生认真检验
本书大多数内容是在原浙江省理科创新实验班课堂实践的基础上发展与完善的。值得一提的是,笔者曾将书中内容给杭州二中2006届重点班学生作为高考复习专题资料,取得较好成效,当年该班高考数学平均分为143分,全班有50%的同学考取清华、北大,其中卢毅同学为浙江省高考理科第一名。因此,对于高三以及高一、高二的优秀学生,这本书可以直接作为复习的教材使用。
编辑本段图书目录
第一章 更高更妙的数学解题策略
1.1 夯实基础知识,争取“拾级而上
1.2 防止思维定式,实现“移花接木
1.3 灵活运用策略,尝试“借石攻玉
1.3.1 归纳猜想
1.3.2 类比迁移
1.3.3 进退互化
1.3.4 整体处理
1.3.5 正难则反
1.4 关注临界问题,掌握“秘密武器
1.4.1 临界法则
1.4.2 临界问题
1.4.3 临界方法
1.5 完善思维过程,达到“水到渠成
第二章 善于用数学思想武装自己
2.1 函数与方程思想
2.1.1 显化函数关系
2.1.2 转换函数关系
2.1.3 构造函数关系
2.1.4 转换方程形式
2.1.5 构造方程形式
2.1.6 联用函数与方程思想
2.2 分类讨论思想
2.2.1 计数问题与概率中的分类讨论
2.2.2 函数中的分类讨论
2.2.3 数列中的分类讨论
2.2.4 不等式中的分类讨论
2.2.5 解析几何中的分类讨论
2.3 数形结合思想
2.3.1 数形结合在集合中的应用
2.3.2 数形结合在函数中的应用
2.3.3 数形结合在不等式中的应用
2.3.4 数形结合在数列中的应用
2.3.5 数形结合在向量中的应用
2.3.6 数形结合在解析几何中的应用
2.3.7 数形结合在立体几何中的应用
2.4 化归与转化思想
2.4.1 变量与变量的转化
2.4.2 高维与低维的转化
2.4.3 特殊与一般的转化
2.4.4 局部与整体的转化
2.4.5 化归与转化的综合运用
2.5 综合运用数学思想解题
好题新题精选(一)
第三章 高考压轴题热点题型透析
3.1 函数综合问题
3.1.1 二次函数综合
3.1.2 高次函数综合
3.1.3 分式函数综合
3.1.4 抽象函数综合
3.1.5 函数综合
好题新题精选(二)
3.2 导数综合问题
好题新题精选(三)
3.3 数列综合问题
3.3.1 数列性质综合
3.3.2 函数与数列
3.3.3 数列不等式
3.3.4 点列问题
好题新题精选(四)
3.4 解析几何综合问题
3.4.1 圆综合
3.4.2 椭圆综合
3.4.3 双曲线综合
3.4.4 抛物线综合
好题新题精选(五)
3.5 新颖性问题
好题新题精选(六)
第四章 用竞赛策略优化高考解题
4.1 熟悉递推方法
4.1.1 累加累乘法
4.1.2 待定系数法
4.1.3 不动点法
4.1.4 阶差法
4.1.5 直接代换法
4.1.6 变形转化法
4.1 _7数学归纳法
好题新题精选(七)
4.2 了解放缩技巧
4.2.1 直接放缩
4.2.2 裂项放缩
4.2.3 并项放缩
4.2.4 加强放缩
好题新题精选(八)
4.3 掌握重要不等式
4.3.1 均值不等式
4.3.2 柯西不等式
4.3.3 排序不等式
好题新题精选(九)
4.4 运用参数与参数方程法
好题新题精选(十)
参考文献
展开全部
学好数学是能力的培养:
一、数学运算
运算是学好数学的基本功.初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程.初中运算能力不过关,会直接影响高中数学的学习.在面对复杂运算的时候,常常要注意以下两点:①情绪稳定,算理明确,过程合理,速度均匀,结果准确;②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚.
二、数学基础知识
理解和记忆数学基础知识是学好数学的前提.理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的.所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”.理解的标准是“准确”、“简单”和“全面”.“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏.对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法.
记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取.借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻.另外,在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式都是以三角函数定义和加法定理为基础的,如果能在记忆公式的同时,掌握推导公式的方法,就能有效地防止遗忘.
三、数学解题
学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路.保证数量就是①选准一本与教材同步的辅导书或练习册.②做完一节的全部练习后,对照答案进行批改.千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的题;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方式:“先做后看”与“先看后测”.③选择有思考价值的题,与同学、老师交流,并把心得记在自习本上.④每天保证1小时左右的练习时间.
保证质量就是①题不在多,而在于精,学会“解剖麻雀”.充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?再现思维活动经过,分析想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法;一题多解,一题多变,多元归一.②落实:不仅要落实思维过程,而且要落实解答过程.③复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法.
四、数学思维
数学思维与哲学思想的融合是学好数学的高层次要求.比如,数学思维方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉.比如,在一些数列问题中,求通项公式和前n项和公式的方法,除了演绎推理外,还可用归纳推理.应该说,领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维,是提高学生数学素养、培养学生数学能力的重要方法.
只要我们重视运算能力的培养,扎扎实实地掌握数学基础知识,学会聪明地做题,并且能够站到哲学的高度去反思自己的数学思维活动,就一定能把数学学好.
希望能帮助您
一、数学运算
运算是学好数学的基本功.初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程.初中运算能力不过关,会直接影响高中数学的学习.在面对复杂运算的时候,常常要注意以下两点:①情绪稳定,算理明确,过程合理,速度均匀,结果准确;②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚.
二、数学基础知识
理解和记忆数学基础知识是学好数学的前提.理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的.所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”.理解的标准是“准确”、“简单”和“全面”.“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏.对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法.
记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取.借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻.另外,在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式都是以三角函数定义和加法定理为基础的,如果能在记忆公式的同时,掌握推导公式的方法,就能有效地防止遗忘.
三、数学解题
学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路.保证数量就是①选准一本与教材同步的辅导书或练习册.②做完一节的全部练习后,对照答案进行批改.千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的题;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方式:“先做后看”与“先看后测”.③选择有思考价值的题,与同学、老师交流,并把心得记在自习本上.④每天保证1小时左右的练习时间.
保证质量就是①题不在多,而在于精,学会“解剖麻雀”.充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?再现思维活动经过,分析想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法;一题多解,一题多变,多元归一.②落实:不仅要落实思维过程,而且要落实解答过程.③复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法.
四、数学思维
数学思维与哲学思想的融合是学好数学的高层次要求.比如,数学思维方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉.比如,在一些数列问题中,求通项公式和前n项和公式的方法,除了演绎推理外,还可用归纳推理.应该说,领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维,是提高学生数学素养、培养学生数学能力的重要方法.
只要我们重视运算能力的培养,扎扎实实地掌握数学基础知识,学会聪明地做题,并且能够站到哲学的高度去反思自己的数学思维活动,就一定能把数学学好.
希望能帮助您
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
数学多做题咯,寻找规律,根据题
型判断方法;准备一个改错本,数学就像一道题目,解法会有很多种,每个人采用的方
法又不一样,所以要自己寻找。
然后好的心态不能少哦
学习挺紧张的吧!上学的孩子都挺苦挺累的,不要给自己轻易的下结论,什么事情都不会太坏的,何况你不是最差的。不管是这次成绩,还是平时的学习,成绩、名次都是扯淡。记得有这么几句问话,你是班级的第一吗?是学校的第一吗?全市的?全国的?那
么不要骄傲。。你是班级的倒数第
一吗?是学校的吗?全市的?全国
的?那么不要自卑。。。你不会是
最差的。要做的就是,给自己一个
目标,有了目标就会有了斗志,不
论累和苦,为了那一瞬间的成就
感,我们充满了斗志!加油!明天
的好坏,在于你今天的决定,不能
放弃!祝你成功!加油加油加油!!!
型判断方法;准备一个改错本,数学就像一道题目,解法会有很多种,每个人采用的方
法又不一样,所以要自己寻找。
然后好的心态不能少哦
学习挺紧张的吧!上学的孩子都挺苦挺累的,不要给自己轻易的下结论,什么事情都不会太坏的,何况你不是最差的。不管是这次成绩,还是平时的学习,成绩、名次都是扯淡。记得有这么几句问话,你是班级的第一吗?是学校的第一吗?全市的?全国的?那
么不要骄傲。。你是班级的倒数第
一吗?是学校的吗?全市的?全国
的?那么不要自卑。。。你不会是
最差的。要做的就是,给自己一个
目标,有了目标就会有了斗志,不
论累和苦,为了那一瞬间的成就
感,我们充满了斗志!加油!明天
的好坏,在于你今天的决定,不能
放弃!祝你成功!加油加油加油!!!
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
虽然我不是老师 但我的数学还不错.可以给你讲讲我的方法.
你的数学成绩只有70分左右 所以你现阶段应该立足基础.
推荐你现在买一本详细的数学参考书 可以使高三一轮复习那种 从头做到尾.
你的成绩一定有较大提高.
接下来我推荐蔡小雄的《更高更妙的高中数学思想与方法》.
我觉的能看完你应该能稳定在130分以上
你的数学成绩只有70分左右 所以你现阶段应该立足基础.
推荐你现在买一本详细的数学参考书 可以使高三一轮复习那种 从头做到尾.
你的成绩一定有较大提高.
接下来我推荐蔡小雄的《更高更妙的高中数学思想与方法》.
我觉的能看完你应该能稳定在130分以上
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询