在三角形ABC中,a,b,c分别是角A,B,C的对边,若a^2+b^2=2014c^2,则(2tanA×tanB)/tanC(tanA+tanB)的值为
1个回答
展开全部
cosC=(a²+b²-c²)/2ab
=(2014c²-c²)/2ab
=2013c²/2ab
由正弦定理
=2013/2*sin²C/sinAsinB
∴cosCsinAsinB/sin²C=2013/2
原式=2(sinAsinB/cosAcosB)/[(sinA/cosA+sinB/cosB)tanC]
=2(sinAsinB)/(sinAcosB+sinBcosA)tanC
=2sinAsinB/[sin(A+B)tanC]
=2sinAsinB/[sinCsinC/cosC]
=2cosCsinAsinB/sin²C
=2*2013/2
=2013
=(2014c²-c²)/2ab
=2013c²/2ab
由正弦定理
=2013/2*sin²C/sinAsinB
∴cosCsinAsinB/sin²C=2013/2
原式=2(sinAsinB/cosAcosB)/[(sinA/cosA+sinB/cosB)tanC]
=2(sinAsinB)/(sinAcosB+sinBcosA)tanC
=2sinAsinB/[sin(A+B)tanC]
=2sinAsinB/[sinCsinC/cosC]
=2cosCsinAsinB/sin²C
=2*2013/2
=2013
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询