已知等差数列{an}中,a2=5,a4=11,记数列{1/an}的前n项和为Sn,若对任意的n∈N,都有S(2n+1)-Sn≤m/20成立
1个回答
展开全部
解:
设{an}公差为d。
a4-a2=2d=11-5=6
d=3
a1=a2-d=5-6=-1
an=a1+(n-1)d=-1+3(n-1)=3n-4
S(2n+1)-Sn=1/(3×1-4)+1/(3×2-4)+...+1/[3×(2n+1)-4]-[1/(3×1-4)+1/(3×2-4)+...+1/(3n-4)]
=1/[3(n+1)-4]+1/[3(n+2)-4]+...+1/[3×(2n+1)-4]
=1/(3n-1)+1/(3n+2)+...+1/[3×(2n)-1]
S[2(n+1)+1]-S(n+1) -[S(2n+1)-Sn]
=1/(3n+2)+1/(3n+5)+...+1/(3×(2n+2)-1] -[1/(3n-1)+1/(3n+2)+...+1/[3×(2n)-1] ]
=1/[3×(2n+2)-1] -1/(3n-1)
=1/(6n+5) -1/(6n-2)
=-7/[(6n+5)(6n-2)]<0
即随n增大,S(2n+1)-Sn单调递减,当n=1时,S(2n+1)-Sn取得最大值,要不等式成立,则只要当S(2n+1)-Sn取得最大值时,不等式成立。
S(2×1+1)-S1=S3-S1=1/a1+1/a2+1/a3-1/a1=1/a2+1/a3=1/(3×2-4)+1/(3×3-4)=1/2+1/5=7/10
m/20≥7/10
m≥14
整数m的最小值为14。
设{an}公差为d。
a4-a2=2d=11-5=6
d=3
a1=a2-d=5-6=-1
an=a1+(n-1)d=-1+3(n-1)=3n-4
S(2n+1)-Sn=1/(3×1-4)+1/(3×2-4)+...+1/[3×(2n+1)-4]-[1/(3×1-4)+1/(3×2-4)+...+1/(3n-4)]
=1/[3(n+1)-4]+1/[3(n+2)-4]+...+1/[3×(2n+1)-4]
=1/(3n-1)+1/(3n+2)+...+1/[3×(2n)-1]
S[2(n+1)+1]-S(n+1) -[S(2n+1)-Sn]
=1/(3n+2)+1/(3n+5)+...+1/(3×(2n+2)-1] -[1/(3n-1)+1/(3n+2)+...+1/[3×(2n)-1] ]
=1/[3×(2n+2)-1] -1/(3n-1)
=1/(6n+5) -1/(6n-2)
=-7/[(6n+5)(6n-2)]<0
即随n增大,S(2n+1)-Sn单调递减,当n=1时,S(2n+1)-Sn取得最大值,要不等式成立,则只要当S(2n+1)-Sn取得最大值时,不等式成立。
S(2×1+1)-S1=S3-S1=1/a1+1/a2+1/a3-1/a1=1/a2+1/a3=1/(3×2-4)+1/(3×3-4)=1/2+1/5=7/10
m/20≥7/10
m≥14
整数m的最小值为14。
更多追问追答
追问
没有这个选项啊
追答
D 选项是什么啊
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询