概率论问题
设随机变量(X,Y)的概率密度为f(x,y)=16y/x^3,x>2,0<y<1,0,其他求Cov(X,Y)...
设随机变量(X,Y)的概率密度为f(x,y)=16y/x^3, x>2, 0<y<1,
0, 其他
求Cov(X,Y) 展开
0, 其他
求Cov(X,Y) 展开
展开全部
Cov(X,Y)=E[(X-EX)(Y-EY)]
所以第一步先求X,Y各自的期望。
那么期望如何求?EX=积分x*f(x)dx 所以先求各自的边缘密度函数
f(x)=积分0到1 f(x,y)dy=8/x^3 EX=积分2到正无穷 x*f(x)dx=4
f(y)=积分2到正无穷 f(x,y)dx=2y EY=积分0到1 y*f(y)dy=2/3
第二步可以直接求协方差,也可以通过f(x,y)=16y/x^3=f(x)f(y)看出X,Y独立直接得协方差为0
Cov(X,Y)=E[(X-EX)(Y-EY)]=二重积分(x-4)(y-2/3)f(x,y)dxdy
=16*积分0到1 (y-2/3)*ydy * 积分2到正无穷 (x-4)/x^3
=0
所以第一步先求X,Y各自的期望。
那么期望如何求?EX=积分x*f(x)dx 所以先求各自的边缘密度函数
f(x)=积分0到1 f(x,y)dy=8/x^3 EX=积分2到正无穷 x*f(x)dx=4
f(y)=积分2到正无穷 f(x,y)dx=2y EY=积分0到1 y*f(y)dy=2/3
第二步可以直接求协方差,也可以通过f(x,y)=16y/x^3=f(x)f(y)看出X,Y独立直接得协方差为0
Cov(X,Y)=E[(X-EX)(Y-EY)]=二重积分(x-4)(y-2/3)f(x,y)dxdy
=16*积分0到1 (y-2/3)*ydy * 积分2到正无穷 (x-4)/x^3
=0
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算方案可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询