半圆的周长怎么算
半圆的周长 c=πr+2r。
圆的周长公式推导(此方面涉及到弧微分):
半圆的周长是圆的一般,即半圆的周长公式: c=πr+2r。
扩展资料:
其他相关计算公式:
1、圆的面积公式
把圆分成若干等份,可以拼成一个近似的长方形。长方形的宽相当于圆的半径。
2、弧长角度公式
扇形弧长L=圆心角(弧度制) * R= nπR/180(n为圆心角)(R为扇形半径)
扇形面积S=nπ R²/360=LR/2(L为扇形的弧长)
圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)
3、扇形面积公式
R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长。
也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n,如下:(L为弧长,R为扇形半径)
推导过程:S=πr²×L/2πr=LR/2
(L=│α│·R)
参考资料:百度百科-半圆
半圆的周长计算公式是:πr+2r。
圆的周长=2×半径×圆周率=直径×圆周率 圆的周长=2πr
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。
扩展资料:
几何法圆周率的算法
古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。
接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。
最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。阿基米德用到了迭代算法和两侧数值逼近的概念,称得上是“计算数学”的鼻祖。
参考资料来源:百度百科-圆周率
明白请采纳,有疑问请追问!
有新问题请求助,谢谢!
半圆的周长怎么求?看过视频,相信你会觉得很轻松