select和epoll的区别

 我来答
miniappYoh44tFFDbwZi
2016-03-06 · 请开发者输入账号签名
miniappYoh44tFFDbwZi
采纳数:14074 获赞数:18289

向TA提问 私信TA
展开全部
先说下本文框架,先是问题引出,然后概括两个机制的区别和联系,最后介绍每个接口的用法
一、问题引出 联系区别
问题的引出,当需要读两个以上的I/O的时候,如果使用阻塞式的I/O,那么可能长时间的阻塞在一个描述符上面,另外的描述符虽然有数据但是不能读出来,这样实时性不能满足要求,大概的解决方案有以下几种:
1.使用多进程或者多线程,但是这种方法会造成程序的复杂,而且对与进程与线程的创建维护也需要很多的开销。(Apache服务器是用的子进程的方式,优点可以隔离用户)
2.用一个进程,但是使用非阻塞的I/O读取数据,当一个I/O不可读的时候立刻返回,检查下一个是否可读,这种形式的循环为轮询(polling),这种方法比较浪费CPU时间,因为大多数时间是不可读,但是仍花费时间不断反复执行read系统调用。
3.异步I/O(asynchronous I/O),当一个描述符准备好的时候用一个信号告诉进程,但是由于信号个数有限,多个描述符时不适用。
4.一种较好的方式为I/O多路转接(I/O multiplexing)(貌似也翻译多路复用),先构造一张有关描述符的列表(epoll中为队列),然后调用一个函数,直到这些描述符中的一个准备好时才返回,返回时告诉进程哪些I/O就绪。select和epoll这两个机制都是多路I/O机制的解决方案,select为POSIX标准中的,而epoll为Linux所特有的。
区别(epoll相对select优点)主要有三:
1.select的句柄数目受限,在linux/posix_types.h头文件有这样的声明:#define __FD_SETSIZE 1024 表示select最多同时监听1024个fd。而epoll没有,它的限制是最大的打开文件句柄数目。
2.epoll的最大好处是不会随着FD的数目增长而降低效率,在selec中采用轮询处理,其中的数据结构类似一个数组的数据结构,而epoll是维护一个队列,直接看队列是不是空就可以了。epoll只会对"活跃"的socket进行操作---这是因为在内核实现中epoll是根据每个fd上面的callback函数实现的。那么,只有"活跃"的socket才会主动的去调用 callback函数(把这个句柄加入队列),其他idle状态句柄则不会,在这点上,epoll实现了一个"伪"AIO。但是如果绝大部分的I/O都是“活跃的”,每个I/O端口使用率很高的话,epoll效率不一定比select高(可能是要维护队列复杂)。
3.使用mmap加速内核与用户空间的消息传递。无论是select,poll还是epoll都需要内核把FD消息通知给用户空间,如何避免不必要的内存拷贝就很重要,在这点上,epoll是通过内核于用户空间mmap同一块内存实现的。
二、接口
1)select
1. int select(int maxfdp1, fd_set *restrict readfds, fd_set *restrict writefds, fd_set *restrict exceptfds, struct timeval *restrict tvptr);
struct timeval{
long tv_sec;
long tv_usec;
}
有三种情况:tvptr == NULL 永远等待;tvptr->tv_sec == 0 && tvptr->tv_usec == 0 完全不等待;不等于0的时候为等待的时间。select的三个指针都可以为空,这时候select提供了一种比sleep更精确的定时器。注意select的第一个参数maxfdp1并不是描述符的个数,而是最大的描述符加1,一是起限制作用,防止出错,二来可以给内核轮询的时候提供一个上届,提高效率。select返回-1表示出错,0表示超时,返回正值是所有的已经准备好的描述符个数(同一个描述符如果读和写都准备好,对结果影响是+2)。
2.int FD_ISSET(int fd, fd_set *fdset); fd在描述符集合中非0,否则返回0
3.int FD_CLR(int fd, fd_set *fd_set); int FD_SET(int fd, fd_set *fdset) ;int FD_ZERO(fd_set *fdset);
用一段linux 中man里的话“FD_ZERO() clears a set.FD_SET() and FD_CLR() respectively add and remove a given file descriptor from a set. FD_ISSET() tests to see if a file descriptor is part of the set; this is useful after select() returns.”这几个函数与描述符的0和1没关系,只是添加删除检测描述符是否在set中。
2)epoll
1.int epoll_create(int size);
创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大。这个参数不同于select()中的第一个参数,给出最大监听的fd+1的值。需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。
2. int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
epoll的事件注册函数,它不同与select()是在监听事件时告诉内核要监听什么类型的事件,而是在这里先注册要监听的事件类型。第一个参数是epoll_create()的返回值,第二个参数表示动作,用三个宏来表示:
EPOLL_CTL_ADD:注册新的fd到epfd中;
EPOLL_CTL_MOD:修改已经注册的fd的监听事件;
EPOLL_CTL_DEL:从epfd中删除一个fd;
第三个参数是需要监听的fd,第四个参数是告诉内核需要监听什么事,struct epoll_event结构如下:
struct epoll_event {
__uint32_t events; /* Epoll events */
epoll_data_t data; /* User data variable */
};
events可以是以下几个宏的集合:
EPOLLIN :表示对应的文件描述符可以读(包括对端SOCKET正常关闭);
EPOLLOUT:表示对应的文件描述符可以写;
EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);
EPOLLERR:表示对应的文件描述符发生错误;
EPOLLHUP:表示对应的文件描述符被挂断;
EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。
EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里
关于epoll工作模式ET,LT
LT(level triggered)是缺省的工作方式,并且同时支持block和no-block socket.在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你的,所以,这种模式编程出错误可能性要小一点。传统的select/poll都是这种模型的代表.
ET (edge-triggered)是高速工作方式,只支持no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知,直到你做了某些操作导致那个文件描述符不再为就绪状态了,但是请注意,如果一直不对这个fd作IO操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only once)
3. int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout)
等待事件的产生,类似于select()调用。参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1永久阻塞)。该函数返回需要处理的事件数目,如返回0表示已超时。
三、参考:
APUE(I/O多路转接)
linux man epoll select
yangjinlong76
活跃答主

2016-03-06 · 非职业答题人
知道顶级答主
回答量:5.7万
采纳率:94%
帮助的人:1.8亿
展开全部
当一个节点和多个节点建立连接时,如何高效的处理多个连接的数据,下面具体分析两者的区别。
1. select函数
函数原型:int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);
参数介绍:(1)nfds -- fdset集合中最大描述符值加1
(2)fdset -- 一个位数组,其大小限制为_FD_SETSIZE(1024)
位数组的每一位代表的是其对应的描述符是否需要被检查。
(3)readfds -- 读事件文件描述符数组
(4 )writefds -- 写事件文件描述符数组
(5)exceptfds -- 错误事件文件描述符数组
(6)timeout -- 超时事件,该结构被内核修改,其值为超时剩余时间。
对应内核:select对应于内核中的sys_select调用,sys_select首先将第二三四个参数指向的fd_set拷贝到内核,然后对每个被SET的描 述符调用进行poll,并记录在临时结果中(fdset),如果有事件发生,select会将临时结果写到用户空间并返回;当轮询一遍后没有任何事件发生时,如果指定了超时时间,则select会睡眠到超时,睡眠结束后再进行一次轮询,并将临时结果写到用户空间,然后返
2. select/poll特点
传统的select/poll每次调用都会线性扫描全部的集合,导致效率呈现线性下降。
poll的执行分三部分:
(1).将用户传入的pollfd数组拷贝到内核空间,因为拷贝操作和数组长度相关,时间上这是一个O(n)操作
(2).查询每个文件描述符对应设备的状态,如果该设备尚未就绪,则在该设备的等待队列中加入一项并继续查询下一设备的状态。 查询完所有设备后如果没有一个设备就绪,这时则需要挂起当前进程等待,直到设备就绪或者超时。设备就绪后进程被通知继续运行,这时再次遍历所有设备,以查找就绪设备。这一步因为两次遍历所有设备,时间复杂度也是O(n),这里面不包括等待时间......
(3). 将获得的数据传送到用户空间并执行释放内存和剥离等待队列等善后工作,向用户空间拷贝数据与剥离等待队列等操作的的时间复杂度同样是O(n)。
3. epoll机制

Linux 2.6内核完全支持epoll。epoll的IO效率不随FD数目增加而线性下降。
要使用epoll只需要这三个系统调用:epoll_create(2), epoll_ctl(2), epoll_wait(2)
epoll用到的所有函数都是在头文件sys/epoll.h中声明的,内核实现中epoll是根据每个fd上面的callback函数实现的。只有"活跃"的socket才会主动的去调用 callback函数,其他idle状态socket则不会。

如果所有的socket基本上都是活跃的---比如一个高速LAN环境,过多使用epoll,效率相比还有稍微的下降。但是一旦使用idle connections模拟WAN环境,epoll的效率就远在select/poll之上了。
3.1 所用到的函数:
(1)、int epoll_create(int size)
该函数生成一个epoll专用的文件描述符,其中的参数是指定生成描述符的最大范围
(2)、int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event)
用于控制某个文件描述符上的事件,可以注册事件,修改事件,删除事件。
如果调用成功返回0,不成功返回-1
int epoll_ctl{
int epfd,//由 epoll_create 生成的epoll专用的文件描述符
int op, //要进行的操作例如注册事件,可能的取值EPOLL_CTL_ADD 注册、
//EPOLL_CTL_MOD 修改、EPOLL_CTL_DEL 删除
int fd, //关联的文件描述符
struct epoll_event *event//指向epoll_event的指针
}
(3)、int epoll_wait(int
epfd, struct epoll_event *
events,int maxevents, int
timeout)
用于轮询I/O事件的发生,返回发生事件数
int epoll_wait{
int epfd,//由epoll_create 生成的epoll专用的文件描述符
struct epoll_event * events,//用于回传代处理事件的数组
int maxevents,//每次能处理的事件数
int timeout//等待I/O事件发生的超时值
//为0的时候表示马上返回,为-1的时候表示一直等下去,直到有事件
//为任意正整数的时候表示等这么长的时间,如果一直没有事件
//一般如果网络主循环是单独的线程的话,可以用-1来等,这样可以保证一些效率
//如果是和主逻辑在同一个线程的话,则可以用0来保证主循环的效率
}
epoll是为处理大批量句柄而作了改进的poll。
4. epoll的优点:

<1>支持一个进程打开大数目的socket描述符(FD)
select 最不能忍受的是一个进程所打开的FD是有一定限制的,由FD_SETSIZE设置,默认值是2048。对于那些需要支持的上万连接数目的IM服务器来说显然太少了。这时候可以:
(1) 可以修改这个宏然后重新编译内核,不过资料也同时指出,这样也会带来网络效率的下降
(2) 可以选择多进程的解决方案,不过虽然linux上创建进程的代价比较下,但是仍旧是不可忽视的,所以也不是很完美的方案
epoll没有这样的限制,它所支持的FD上限是最大可以打开文件的数目,这个数字一般远大于2048,具体数组可以查看cat /proc/sys/fs/file-max查看,这个数目和系统内存关系很大。
<2>IO效率不随FD数目增加而线性下降
传统的select/poll另一个致命弱点就是当你拥有一个很大的socket集合,不过由于网络延时,任一时间只有部分的socket是"活跃"的,但是select/poll每次调用都会线性扫描全部的集合,导致效率呈现线性下降。
epoll不存在这个问题,它只会对“活跃”的socket进行操作。
这是因为在内核实现中epoll是根据每个fd上面的callback函数实现的。那么,只有"活跃"的socket才会主动的去调用 callback函数,其他idle状态socket则不会,在这点上,epoll实现了一个"伪"AIO,因为这时候推动力在os内核。在一些 benchmark中,如果所有的socket基本上都是活跃的---比如一个高速LAN环境,epoll并不比select/poll有什么效率,相 反,如果过多使用epoll_ctl,效率相比还有稍微的下降。但是一旦使用idle connections模拟WAN环境,epoll的效率就远在select/poll之上了。
<3>使用mmap加速内核与用户空间的消息传递这点实际上涉及到epoll的具体实现了。无论是select,poll还是epoll都需要内核把FD消息通知给用户空间,如何避免不必要的内存拷贝就 很重要,在这点上,epoll是通过内核于用户空间mmap同一块内存实现的。而如果你想我一样从2.5内核就关注epoll的话,一定不会忘记手工 mmap这一步的。
<4>内核微调
这一点其实不算epoll的优点了,而是整个linux平台的优点。也许你可以怀 疑linux平台,但是你无法回避linux平台赋予你微调内核的能力。比如,内核TCP/IP协议栈使用内存池管理sk_buff结构,那么可以在运行 时期动态调整这个内存pool(skb_head_pool)的大小--- 通过echo XXXX>/proc/sys/net/core/hot_list_length完成。再比如listen函数的第2个参数(TCP完成3次握手 的数据包队列长度),也可以根据你平台内存大小动态调整。更甚至在一个数据包面数目巨大但同时每个数据包本身大小却很小的特殊系统上尝试最新的NAPI网 卡驱动架构。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式