已知a,b,c都是正数,且abc=1,求证:(1+a)(1+b)(1+c)≥8

 我来答
匿名用户
2013-06-01
展开全部
证明:(1+a)(1+b)(1+c)=1+a+b+c+ab+ac+bc+abc (abc=1,a>0,b>0,c>0) =2+a+b+c+1/c+1/b+1/a =2+(a+1/a)+(b+1/b)+(c+1/c) ≥2+2√a·1/a+2√b·1/b+2√c·1/c=8 当且仅当a=1/a,b=1/b,c=1/c即a=b=c=1时取等号所以(1+a)(1+b)(1+c)≥8
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式