已知P是椭圆x²/4+y²=1的上顶点,Q是该椭圆上任意一点,求PQ的最大值.
展开全部
P(0,1)
Q用参数表示
Q(2sina,cosa)
两点距离公式
PQ=√(4sin^2a+(cosa-1)^2)=√(4sin^2a+cos^2-2cosa+1)
设y=4sin^2a+cos^2-2cosa+1
=4(1-cos^2a)+cos^2-2cosa+1
=-3cos^2-2cosa+5
-3<0
对称轴是cosa=-1/3
∴y最大值时cosa=-1/3
=-3*1/9+2/3+5
=16/3
PQ最大值=√ymax=4√3/3
如果本题有什么不明白可以追问,如果满意记得采纳
如果有其他问题请另发或点击向我求助,答题不易,请谅解,谢谢。
祝学习进步!
Q用参数表示
Q(2sina,cosa)
两点距离公式
PQ=√(4sin^2a+(cosa-1)^2)=√(4sin^2a+cos^2-2cosa+1)
设y=4sin^2a+cos^2-2cosa+1
=4(1-cos^2a)+cos^2-2cosa+1
=-3cos^2-2cosa+5
-3<0
对称轴是cosa=-1/3
∴y最大值时cosa=-1/3
=-3*1/9+2/3+5
=16/3
PQ最大值=√ymax=4√3/3
如果本题有什么不明白可以追问,如果满意记得采纳
如果有其他问题请另发或点击向我求助,答题不易,请谅解,谢谢。
祝学习进步!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询