
1个回答
展开全部
a)、log(log|x|)=log(ln|x|/ln10)=ln(ln|x|/ln10)/ln10
∫<-5,-4>log(log|x|)/x*dx
=∫<-5,-4>[ln(ln|x|/ln10)/ln10]/x*dx
=-1/ln10∫<-5,-4>[ln(ln|x|)-ln(ln10)]/(-x)*dx
=-1/ln10∫<-5,-4>[ln(ln|x|)-ln(ln10)]dln|x|
={-1/ln10*ln|x|*[ln(ln|x|)-1-ln(ln10)]}|<-5,-4>
=-1/ln10*{ln4*[ln(ln4)-1-ln(ln10)]-ln5*[ln(ln5)-1-ln(ln10)]}
≈-1/ln10*(-2.090+2.186)
≈-0.0417
b)、∫<1/2,1>3√(1-x^2)/x^2*dx
=3∫<π/6,π/2>√(1-sint^2)/sint^2*dsint x=sint, t∈[π/6,π/2]
=3∫<π/6,π/2>cost*costdt/sint^2
=3∫<π/6,π/2>(cot)^2dt
=3∫<π/6,π/2>[(csc)^2-1]dt
=3<π/6,π/2>[-cott-t]
=3[(-0-π/2)-(-√3-π/6)]
=3(√3-π/3)
=3√3-π
4)、是求最值点,不是求最值
F(x)=∫<1,e^x>(logt)^(1/3)dt
F'(x)=d/dx[∫<1,e^x>(logt)^(1/3)dt]
=(logx)^(1/3)*(e^x)'
=(logx)^(1/3)*e^x
令F'(x)=0,可得
(logx)^(1/3)*e^x=0
=> logx=0
=> x=1
∵x≥1时,F'(x)≥0,F(x)为增函数
0<x≤1时,F'(x)≤0,F(x)为减函数
∴x=1时,F(x)取得最小值
∫<-5,-4>log(log|x|)/x*dx
=∫<-5,-4>[ln(ln|x|/ln10)/ln10]/x*dx
=-1/ln10∫<-5,-4>[ln(ln|x|)-ln(ln10)]/(-x)*dx
=-1/ln10∫<-5,-4>[ln(ln|x|)-ln(ln10)]dln|x|
={-1/ln10*ln|x|*[ln(ln|x|)-1-ln(ln10)]}|<-5,-4>
=-1/ln10*{ln4*[ln(ln4)-1-ln(ln10)]-ln5*[ln(ln5)-1-ln(ln10)]}
≈-1/ln10*(-2.090+2.186)
≈-0.0417
b)、∫<1/2,1>3√(1-x^2)/x^2*dx
=3∫<π/6,π/2>√(1-sint^2)/sint^2*dsint x=sint, t∈[π/6,π/2]
=3∫<π/6,π/2>cost*costdt/sint^2
=3∫<π/6,π/2>(cot)^2dt
=3∫<π/6,π/2>[(csc)^2-1]dt
=3<π/6,π/2>[-cott-t]
=3[(-0-π/2)-(-√3-π/6)]
=3(√3-π/3)
=3√3-π
4)、是求最值点,不是求最值
F(x)=∫<1,e^x>(logt)^(1/3)dt
F'(x)=d/dx[∫<1,e^x>(logt)^(1/3)dt]
=(logx)^(1/3)*(e^x)'
=(logx)^(1/3)*e^x
令F'(x)=0,可得
(logx)^(1/3)*e^x=0
=> logx=0
=> x=1
∵x≥1时,F'(x)≥0,F(x)为增函数
0<x≤1时,F'(x)≤0,F(x)为减函数
∴x=1时,F(x)取得最小值
更多追问追答
追问
不好意思 国外的数学题的log 就是国内的ln 所以我感觉你这个好像不太对呢
追答
你不早说,让含ln10的地方等于1就行了
∫ln(ln|x|)/x*dx
=-∫[ln(ln|x|)]/(-x)*dx
=-∫[ln(ln|x|)]dln|x|
=-ln|x|*[ln(ln|x|)-1]
=-{ln4*[ln(ln4)-1]-ln5*[ln(ln5)-1]}
≈-(-0.9335+0.8435)
≈0.090
第二、三题不影响
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询