求幂级数∑(∞,n=1)n(n+1)x^n的在其收敛域的和函数

帐号已注销
2020-06-26 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:167万
展开全部

设其和函数为f(x),xf(x)就变成(x^n+1)/n+1的幂级数,对新的幂级数逐项求导。

显然由比bai值审敛法易知其收敛域为(-1,1)

∑du(n+1)/n(x^n)=∑(1+1/n)*x^n=∑x^n+∑(1/n)*x^n=x/(1-x)+∑(1/n)*x^n

令f(x)=∑(1/n)*x^n

则f′(x)=∑x^(n-1)=1/(1-x)

所以f(x)=∫(上daox,下0)1/(1-x)

dx

=-ln(1-x)

所以

∑(n+1)/n(x^n)=x/(1-x)-ln(1-x)

扩展资料:

数项级数式(4)可能收敛,也可能发散。如果数项级数式(4)是收敛的,称为函数项级数(1)的收敛点;如果数项级数式(4)是发散的,称为函数项级数(1)的发散点。函数项级数式(1)的所有收敛点的集合称为其收敛域,所有发散点的集合称为其发散域。

对于收敛域上的每一个数x,函数项级数(1)都是一个收敛的常数项级数,因而有一确定的和。因此,在收敛域上函数项级数的和是x的函数,称为函数项级数的和函数,记作s(x)。

参考资料来源:百度百科-幂级数

nsjiang1
推荐于2017-11-25 · TA获得超过1.3万个赞
知道大有可为答主
回答量:8735
采纳率:94%
帮助的人:3849万
展开全部
后项比前项的绝对值的极限=|x|
收敛域:|x|<1
级数∑(n=1,∞)x^(n+1)=x^2/(1-x)=-1-x+1/(1-x)
两边求导: ∑(n=1,∞)(n+1)x^(n)=x^2/(1-x)=-1+1/(1-x)^2
再求导: ∑(n=1,∞)n(n+1)x^(n-1)=x^2/(1-x)=2/(1-x)^3
所以:∑(n=1,∞)n(n+1)x^(n)=2x/(1-x)^3 |x|<1
追问
麻烦再问一下,答案第三行级数∑(n=1,∞)x^(n+1)为什么等于x^2/(1-x)????
追答
首项x^2  ,公比x的等比级数求和
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式