求幂级数∑(∞,n=1)n(n+1)x^n的在其收敛域的和函数
2个回答
展开全部
设其和函数为f(x),xf(x)就变成(x^n+1)/n+1的幂级数,对新的幂级数逐项求导。
显然由比bai值审敛法易知其收敛域为(-1,1)
∑du(n+1)/n(x^n)=∑(1+1/n)*x^n=∑x^n+∑(1/n)*x^n=x/(1-x)+∑(1/n)*x^n
令f(x)=∑(1/n)*x^n
则f′(x)=∑x^(n-1)=1/(1-x)
所以f(x)=∫(上daox,下0)1/(1-x)
dx
=-ln(1-x)
所以
∑(n+1)/n(x^n)=x/(1-x)-ln(1-x)
扩展资料:
数项级数式(4)可能收敛,也可能发散。如果数项级数式(4)是收敛的,称为函数项级数(1)的收敛点;如果数项级数式(4)是发散的,称为函数项级数(1)的发散点。函数项级数式(1)的所有收敛点的集合称为其收敛域,所有发散点的集合称为其发散域。
对于收敛域上的每一个数x,函数项级数(1)都是一个收敛的常数项级数,因而有一确定的和。因此,在收敛域上函数项级数的和是x的函数,称为函数项级数的和函数,记作s(x)。
参考资料来源:百度百科-幂级数
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
后项比前项的绝对值的极限=|x|
收敛域:|x|<1
级数∑(n=1,∞)x^(n+1)=x^2/(1-x)=-1-x+1/(1-x)
两边求导: ∑(n=1,∞)(n+1)x^(n)=x^2/(1-x)=-1+1/(1-x)^2
再求导: ∑(n=1,∞)n(n+1)x^(n-1)=x^2/(1-x)=2/(1-x)^3
所以:∑(n=1,∞)n(n+1)x^(n)=2x/(1-x)^3 |x|<1
收敛域:|x|<1
级数∑(n=1,∞)x^(n+1)=x^2/(1-x)=-1-x+1/(1-x)
两边求导: ∑(n=1,∞)(n+1)x^(n)=x^2/(1-x)=-1+1/(1-x)^2
再求导: ∑(n=1,∞)n(n+1)x^(n-1)=x^2/(1-x)=2/(1-x)^3
所以:∑(n=1,∞)n(n+1)x^(n)=2x/(1-x)^3 |x|<1
追问
麻烦再问一下,答案第三行级数∑(n=1,∞)x^(n+1)为什么等于x^2/(1-x)????
追答
首项x^2 ,公比x的等比级数求和
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |