若sinα+cosα=根号2,则tan(α+π/3)=?
2个回答
展开全部
sinα+cosα=根号2(根号2/2sinα+根号2/2cosα)
=根号2sin(α+π/4)
=根号2
所以sin(α+π/4)=1,α=π/4+2kπ
tan(α+π/3)=tan(π/4+2kπ+π/3)
=(tanπ/4+tanπ/3)/(1-tanπ/4tanπ/3)
=(1+根号3)/(1-根号3)
=根号2sin(α+π/4)
=根号2
所以sin(α+π/4)=1,α=π/4+2kπ
tan(α+π/3)=tan(π/4+2kπ+π/3)
=(tanπ/4+tanπ/3)/(1-tanπ/4tanπ/3)
=(1+根号3)/(1-根号3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询