高等数学利用极坐标计算二重积分:∫∫ln(1+x^2+y^2)dσ,其中D是由圆周x^2+y^2=1
高等数学利用极坐标计算二重积分:∫∫ln(1+x^2+y^2)dσ,其中D是由圆周x^2+y^2=1及坐标轴所围城的在第一项限内的闭区域...
高等数学利用极坐标计算二重积分:∫∫ln(1+x^2+y^2)dσ,其中D是由圆周x^2+y^2=1及坐标轴所围城的在第一项限内的闭区域
展开
展开全部
∫(0到π/2)dθ∫(0到1)ln(1+r^2)rdr
算不定积分∫rln(1+r^2)dr
=∫1/2ln(1+r^2)d(1+r^2)
=1/2∫ln(1+r^2)d(1+r^2)
∫lnxdx=xlnx-x+C
所以1/2∫ln(1+r^2)d(1+r^2)
=1/2[(1+r^2)ln(1+r^2)-(1+r^2)]+C
则∫(0到π/2)dθ∫(0到1)ln(1+r^2)rdr
=π/2∫(0到1)ln(1+r^2)rdr
=π/2[1/2((1+r^2)ln(1+r^2)-(1+r^2))]|(0到1)
=π/4(2ln2-2-(-1))
=(2ln2-1)π/4
扩展资料
积分发展的动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。
比如一个长方体状的游泳池的容积可以用长×宽×高求出。但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。物理学中,常常需要知道一个物理量(比如位移)对另一个物理量(比如力)的累积效果,这时也需要用到积分。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |