高一数学 数列问题!求大神解答
对于正项数列{a^n},若a_(n+1)/a_n≥q,对一切n(为自然数)恒成立,则a_n≥a_1*q^(n-1)恒成立也是真命题。1.若a_1=1,a_n>0,且a_(...
对于正项数列{a^n},若a_(n+1)/a_n ≥q,对一切n(为自然数)恒成立,则a_n≥a_1*q^(n-1)恒成立也是真命题。
1.若a_1=1,a_n>0,且a_(n+1)/a_n ≥3c(c不为1/3或1),求证数列{a^n}前n项和S_n≥(1-〖(3c)〗^n)/(1-3c);
2.若x_1=4,x_n=√(2x_(n-1)+3),(n≥2),求证:3-(2/3)^(n-1)≤x_n≤3+(2/3)^(n-1) 展开
1.若a_1=1,a_n>0,且a_(n+1)/a_n ≥3c(c不为1/3或1),求证数列{a^n}前n项和S_n≥(1-〖(3c)〗^n)/(1-3c);
2.若x_1=4,x_n=√(2x_(n-1)+3),(n≥2),求证:3-(2/3)^(n-1)≤x_n≤3+(2/3)^(n-1) 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询