曲面积分2xzdydz+yzdzdx-x^2dxdy 锥面z=根号下x^2+y^2与半球面z=根号下4-x^2-y^2所围立体的表面的外侧
3个回答
展开全部
由高斯公式:
曲面积分2xzdydz+yzdzdx-x^2dxdy= ∫∫∫3zdxdydz
z=根号下x^2+y^2与半球面z=根号下4-x^2-y^2的交线:x^2+y^2=2.下面用截面法:
用z=z截立体,在(0,√2)截面Dz1:z^2=x^2+y^2,在(√2,2)截面Dz1:z^2=4-(x^2+y^2)
∫∫∫3zdxdydz=∫(0,√2)3zdz∫∫(Dz1)dxdy+∫(√2,1)3zdz∫∫(Dz)dxdy
=∫(0,√2)3πz^3dz+∫(√2,1)3πz(4-z^2)dz
剩下的可以做了
曲面积分2xzdydz+yzdzdx-x^2dxdy= ∫∫∫3zdxdydz
z=根号下x^2+y^2与半球面z=根号下4-x^2-y^2的交线:x^2+y^2=2.下面用截面法:
用z=z截立体,在(0,√2)截面Dz1:z^2=x^2+y^2,在(√2,2)截面Dz1:z^2=4-(x^2+y^2)
∫∫∫3zdxdydz=∫(0,√2)3zdz∫∫(Dz1)dxdy+∫(√2,1)3zdz∫∫(Dz)dxdy
=∫(0,√2)3πz^3dz+∫(√2,1)3πz(4-z^2)dz
剩下的可以做了
追问
可以不用截面做吗?用正常做法
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询