第一类曲线积分为什么能够求曲面面积

 我来答 举报
fin3574
高粉答主

推荐于2017-10-28 · 你好啊,我是fin3574,請多多指教
fin3574
采纳数:21378 获赞数:134628

向TA提问 私信TA
展开全部

你好!答案如图所示:


很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报
。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。XD
如果问题解决后,请点击下面的“选为满意答案”

追问
有文字描述吗
追答

生活百事咖
高粉答主

2020-12-01 · 醉心答题,欢迎关注
知道大有可为答主
回答量:1.4万
采纳率:77%
帮助的人:434万
展开全部
是指曲面表面的面积。把光滑曲面S分成没有公共内点的n块S1,... , Sn,且每一块仍是光滑曲面,在每个S上取一点P,过P作S的切平面T,将s投影到T上,所有这些投影的面积之和的极限(当所有S的直径趋于零时)如果存在,就是曲面S的面积,对有界简单光滑曲面而言,这样的极限总是存在的,而且与曲面的光滑等价的参数表示的选择无关。
设空间有界曲面

其中


面上的投影区域,

上具有连续的偏导数,下面讨论曲面
的面积的计算问题。
现用平行于x轴和y轴的两组平行直线分割投影区域
,任取其中的一块记作
,其面积也记作
,则当
的直径很小时,

表示以
的边界为准线,母线平行于z轴的柱面截得的曲面
上的那部分,设

上的任一点,根据条件,曲面
在点P处有切平面,则可用柱面截得切平面上的那一小片平面的面积dS近似地代替
的面积
,则
其中,
是切平面与
面的夹角,也就是切平面的法向量n与
面的法线
轴的夹角,由曲面
的方程可知
所以
代人式(1)得
则曲面的面积微元为
将dS在投影区域
上积分,便得计算曲面面积的二重积分公式
已赞过 已踩过<
你对这个回答的评价是?
评论(2) 举报 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式