如图在平面直角坐标系中O是坐标原点点A的坐标是(-2,3)过点A作AB⊥y轴,垂足为B,连结OA, 5
抛物线y=-x2-2x+c经过点A,与x轴正半轴交于点C(1)求c的值;(2)将△OAB沿直线OA翻折,记点B的对应点B′,向左平移抛物线,使B′恰好落在平移后抛物线的对...
抛物线y=-x2-2x+c经过点A,与x轴正半轴交于点C(1)求c的值;(2)将△OAB沿直线OA翻折,记点B的对应点B′,向左平移抛物线,使B′恰好落在平移后抛物线的对称轴上,求平移后的抛物线解析式.(3)连接BC,设点E在x轴上,点F在抛物线上,如果B、C、E、F构成平行四边形,请写出点E的坐标
展开
2个回答
2014-01-13
展开全部
解答:
解:(1)把A(﹣2,3)代入y=﹣x2﹣2x+c,解得c=3;
(2)∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴抛物线的顶点D的坐标为(﹣1,4)
∵抛物线的对称轴与AB、AO的交点坐标分别为(﹣1,3)、(﹣1,5),
∴m的取值范围为3<m<5;
(3)延长BA交对称轴于M,
∵∠B′=90°,∴△AMB′∽△B′NO, ,
设AM=a,可得B′N=a,由勾股定理得:AM2+MB2=AB′2,
∴a2+(3﹣a)2=22,
解得:a1=2,a2=,
∴MB=2+=,故向左平移个单位,y=﹣(x+)2+4;
(4)①BC为平行四边形的一边时;E1(﹣1,0),E3(﹣2﹣,0),
②BC为平行四边形的对角线时E2(3,0),E4(﹣2+,0),
综上所述:如果B、C、E、F构成平行四边形,则E点的坐标分别是:E1(﹣1,0),E2(3,0),E3(﹣2﹣,0),E4(﹣2+,0).
http://www.jyeoo.com/math/ques/detail/53908855-6c37-494b-b627-04c8134b5353
解:(1)把A(﹣2,3)代入y=﹣x2﹣2x+c,解得c=3;
(2)∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴抛物线的顶点D的坐标为(﹣1,4)
∵抛物线的对称轴与AB、AO的交点坐标分别为(﹣1,3)、(﹣1,5),
∴m的取值范围为3<m<5;
(3)延长BA交对称轴于M,
∵∠B′=90°,∴△AMB′∽△B′NO, ,
设AM=a,可得B′N=a,由勾股定理得:AM2+MB2=AB′2,
∴a2+(3﹣a)2=22,
解得:a1=2,a2=,
∴MB=2+=,故向左平移个单位,y=﹣(x+)2+4;
(4)①BC为平行四边形的一边时;E1(﹣1,0),E3(﹣2﹣,0),
②BC为平行四边形的对角线时E2(3,0),E4(﹣2+,0),
综上所述:如果B、C、E、F构成平行四边形,则E点的坐标分别是:E1(﹣1,0),E2(3,0),E3(﹣2﹣,0),E4(﹣2+,0).
http://www.jyeoo.com/math/ques/detail/53908855-6c37-494b-b627-04c8134b5353
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询