预期收益率的计算模型
我们主要以资本资产定价模型为基础,结合套利定价模型来计算。
首先一个概念是β值。它表明一项投资的风险程度:
资产i的β值=资产i与市场投资组合的协方差/市场投资组合的方差
市场投资组合与其自身的协方差就是市场投资组合的方差,因此市场投资组合的β值永远等于1,风险大于平均资产的投资β值大于1,反之小于1,无风险投资β值等于0。
需要说明的是,在投资组合中,可能会有个别资产的收益率小于0,这说明,这项资产的投资回报率会小于无风险利率。一般来讲,要避免这样的投资项目,除非你已经很好到做到分散化。
下面一个问题是单个资产的收益率:
一项资产的预期收益率与其β值线形相关: E(Ri)=Rf+βi[E(Rm)-Rf]
其中: Rf:无风险收益率
E(Rm):市场投资组合的预期收益率
βi: 投资i的β值。
E(Rm)-Rf为投资组合的风险溢酬。
整个投资组合的β值是投资组合中各资产β值的加权平均数,在不存在套利的情况下,资产收益率。
对于多要素的情况:
E(R)=Rf+∑βi[E(Ri)-Rf]
其中,E(Ri): 要素i的β值为1而其它要素的β均为0的投资组合的预期收益率。
首先确定一个可接受的收益率,即风险溢酬。风险溢酬衡量了一个投资者将其资产从无风险投资转移到一个平均的风险投资时所需要的额外收益。风险溢酬是你投资组合的预期收益率减去无风险投资的收益率的差额。这个数字一般情况下要大于1才有意义,否则说明你的投资组合选择是有问题的。
风险越高,所期望的风险溢酬就应该越大。 对于无风险收益率,一般是以政府长期债券的年利率为基础的。在美国等发达市场,有完善的股票市场作为参考依据。就目前我国的情况,从股票市场尚难得出一个合适的结论,结合国民生产总值的增长率来估计风险溢酬未尝不是一个好的选择。
2021-01-25 广告