johnson cook模型的失效模型
由此材料的强度是应变、应变率和温度的函数。JC模型假设材料为各向同性材料。方程(1)中的 A, B, C, n 和 m 来自实验数据,对于大变形问题,可以假设在变形过程中,塑性功的任意百分比在变形材料中产生热量。对于许多材料,90-100%的塑性功作为热量在材料中散失。因此,方程(1)中使用的温度可以根据下面的表达式从温度上升中导出:
ΔT =[α∫σ(ε) dε]/ρc (3)
式中
ΔT - temperature increase
α - percentage of plastic work transformed to heat
c - heat capacity
ρ - density
JC材料模型的断裂由下面的累积损坏法则导出
D = Σ (Δε/εf) (4)
式中
εf = [D1 + D2exp(D3σ*)][1+D4lnε*][1+D5T*] (5)
Δε - increment of effective plastic strain during an increment in loading
σ* - mean stress normalized by the effective stress
D1, D2, D3, D4, D5 - constants
当D = 1时发生失效。失效应变εf和损伤的累积,是平均应力、应变率和温度的函数。
材料 Ti-6Al-4V Titanium
A: 1098 MPa (159.246 ksi)
B: 1092 MPa (158.376 ksi)
n: 0.93
C:0.014
m:1.1
D1:-0.090
D2:0.270
D3:0.480
D4:0.014
D5:3.870
材料 2024-T3 Aluminum
A:369 MPa (53.517 ksi)
B:684 MPa (99.202 ksi)
n:0.73
C:0.0083
m:1.7
D1:0.112
D2:0.123
D3:1.500
D4:0.007
D5:0.0
数据来源:
[1] D. R. Leseur. Experimental investigations of material models for Ti-6Al-4V titanium and 2024-T3 aluminum. Tech. Rep. DOT/FAA/AR-00/25. US department of Transportation. Federal Aviation Administration. September, 2000.
[2] G. Kay. Failure modeling of titanium 6Al-4V and aluminum 2024-T3 with the Johnson-Cook material model. Tech. Rep. DOT/FAA/AR-03/57. US department of Transportation, Federal Aviation Administration, September, 2003.