设a b c为正数,求证a的十二次方/bc+b的十二次/ac+c的十二次方/ab大于等于a的十次方+b的十次方+... 40
设abc为正数,求证a的十二次方/bc+b的十二次/ac+c的十二次方/ab大于等于a的十次方+b的十次方+c的十次方,用柯西不等式解...
设a b c为正数,求证a的十二次方/bc+b的十二次/ac+c的十二次方/ab大于等于a的十次方+b的十次方+c的十次方,用柯西不等式解
展开
1个回答
2013-06-04
展开全部
不妨设a>=b>=c,所以(a^12/bc+b^12/ca+c^12/ab)=(a^10*a^2/bc+b^10*b^2/ac+c^10*c^2/ab),然后由排序不等式得(a^10*a^2/bc+b^10*b^2/ac+c^10*c^2/ab)>=1/3*(a^10+b^10+c^10)*(a^2/bc+b^2/ac+c^2/ab)
而(a^2/bc+b^2/ac+c^2/ab)由均值不等式得>=3,
所以(a^12/bc+b^12/ca+c^12/ab)=(a^10*a^2/bc+b^10*b^2/ac+c^10*c^2/ab)>=1/3*(a^10+b^10+c^10)*(a^2/bc+b^2/ac+c^2/ab)>=a^10+b^10+c^10
得证
参考:
由轮换对称性,不妨设 a≥b≥c. 则有 1/(bc)≥1/(ac)≥1/(ab),
以及 1/c≥1/b≥1/a,所以 a^12/(bc) +b^12/(ac)+ c^12/(ab) 为顺序和,由于顺序和不小于乱序和,因此有
a^12/(bc) + b^12/(ac) + c^12/(ab)
≥a^12/(ac) + b^12/(ab) + c^12/(bc)
=a^11/c + b^11/a + c^11/b (这是乱序和,其不小于反序和)
≥a^11/a + b^11/b + c^11/c
=a^10 + b^10 + c^10
原不等式成立。
而(a^2/bc+b^2/ac+c^2/ab)由均值不等式得>=3,
所以(a^12/bc+b^12/ca+c^12/ab)=(a^10*a^2/bc+b^10*b^2/ac+c^10*c^2/ab)>=1/3*(a^10+b^10+c^10)*(a^2/bc+b^2/ac+c^2/ab)>=a^10+b^10+c^10
得证
参考:
由轮换对称性,不妨设 a≥b≥c. 则有 1/(bc)≥1/(ac)≥1/(ab),
以及 1/c≥1/b≥1/a,所以 a^12/(bc) +b^12/(ac)+ c^12/(ab) 为顺序和,由于顺序和不小于乱序和,因此有
a^12/(bc) + b^12/(ac) + c^12/(ab)
≥a^12/(ac) + b^12/(ab) + c^12/(bc)
=a^11/c + b^11/a + c^11/b (这是乱序和,其不小于反序和)
≥a^11/a + b^11/b + c^11/c
=a^10 + b^10 + c^10
原不等式成立。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询