已知实数a、b分别满足a²+2a=2,b²+2b=2,且a≠b,求1/a+1/b的值。 在线等啊
4个回答
展开全部
要证明(a^2+2a+2)x^2+ax+b=0是关于x的一元二次方程
只需要证明a^2+2a+2≠0即可
因为,
a^2+2a+2
=(a^2+2a+1)+1
=(a+1)^2+1
>0
因此,
不论a为何实数,关于x的方程(a平方+2a+2)x平方+ax+b=0都是一元二次方程
有不懂欢迎追问
只需要证明a^2+2a+2≠0即可
因为,
a^2+2a+2
=(a^2+2a+1)+1
=(a+1)^2+1
>0
因此,
不论a为何实数,关于x的方程(a平方+2a+2)x平方+ax+b=0都是一元二次方程
有不懂欢迎追问
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a^2+2a+1=3,b^2+2b+1=3,
(a+1)^2=3,(b+1)^2=3,
1/a+1/b=1/(3^0.5-1)+1/(-3^0.5-1)=1
(a+1)^2=3,(b+1)^2=3,
1/a+1/b=1/(3^0.5-1)+1/(-3^0.5-1)=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/a+1/b=a+b/ab=-2/-2=1[记方程x平方+2x=2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这样就可以设x^2+2x-2=0,a,b是x的解,a+b=-1,ab=-1,1/a+1/b=(a+b)/ab=-1/(-1)=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询