怎样解决复合函数零点问题
1个回答
展开全部
复合函数的零点问题,也详细说明一下,比如说子函数有3个零点,复合到含有2个零点的母函数就变成有2+3=5个零点或者是2*3=6个零点(假设子母函数定义域都是R) 向左转|向右转

1)f[g(x)]:f(x)存在三个零点,分别是[-2,-1][0][1,2];而g(x)的值在[-2,-1]上对应的x有两个,在[1,2]上对应的x有两个,g(x)=0的根也是两个,所以复合函数有六个根。
2)f(x)+g(x),这个答案是有些问题的,这个要看两个函数复合后函数在某一区间的单调问题,如果复合后在譬如[0,1]区间上是单调的,那这个答案应该是对的
3)f(x)*g(x),这个答案是最简单的,只要f(x)或g(x)其中有一个为0,且f(x)和g(x)不同时为0,这样f(x)和g(x)的乘积的根就是他们分别得根数相加。
4)g[f(x)],其道理同(1),g(x)有两个零点,在[-2,-1]和[0,1]内,f(x)的值在[-2,-1]内对应的x有1个,f(x)的值在[0,1]内对应的x有三个,加起来是四个。
对于其他的复合函数的问题,只能说f(x)*g(x)的根数是二者的根数相加(f(x)和g(x)不同时为0),若f(x)和g(x)在x=x1时同时为0,则要相应减去相同的根数。
其他的f[g(x)]的问题只能是具体问题具体分析了。
至于f(x)+-g(x)的问题是最为复杂的。

1)f[g(x)]:f(x)存在三个零点,分别是[-2,-1][0][1,2];而g(x)的值在[-2,-1]上对应的x有两个,在[1,2]上对应的x有两个,g(x)=0的根也是两个,所以复合函数有六个根。
2)f(x)+g(x),这个答案是有些问题的,这个要看两个函数复合后函数在某一区间的单调问题,如果复合后在譬如[0,1]区间上是单调的,那这个答案应该是对的
3)f(x)*g(x),这个答案是最简单的,只要f(x)或g(x)其中有一个为0,且f(x)和g(x)不同时为0,这样f(x)和g(x)的乘积的根就是他们分别得根数相加。
4)g[f(x)],其道理同(1),g(x)有两个零点,在[-2,-1]和[0,1]内,f(x)的值在[-2,-1]内对应的x有1个,f(x)的值在[0,1]内对应的x有三个,加起来是四个。
对于其他的复合函数的问题,只能说f(x)*g(x)的根数是二者的根数相加(f(x)和g(x)不同时为0),若f(x)和g(x)在x=x1时同时为0,则要相应减去相同的根数。
其他的f[g(x)]的问题只能是具体问题具体分析了。
至于f(x)+-g(x)的问题是最为复杂的。
追问
看不懂,能详细点吗
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询