已知θ∈﹙0,π﹚,且sinθ+cosθ=-7/13,求tanθ
1个回答
2013-06-05
展开全部
解:θ∈(0,π),而且sinθ + cosθ= -7/13①,说明sinθ和cosθ中至少有一个是负数,如果θ∈(0,π/2),sinθ > 0而且cosθ > 0=> sinθ + cosθ > 0,与题意不符,舍去。因此θ∈(π/2,π),即θ是第二象限角,cosθ < 0;
因为sin2θ+ cos2θ = 1②,把①②联立解得(-7/13 – cosθ)2 + cos2θ = 1 =>2cos2θ + (14/13)cosθ + 49/169 = 1 => 2cos2θ + (14/13)cosθ– 120/169 = 0 => cos2θ + (7/13)cosθ – 60/169 = 0 => 169cos2θ+ 91cosθ – 60 = 0 => (13cosθ + 12)(13cosθ – 5) = 0 => (13cosθ + 12) = 0或者(13cosθ – 5)= 0 => cosθ = -12/13或者5/13(正值舍去),进而sinθ = √(1 – cos2θ) = √(1 – 144/169) = 5/13,所以tanθ = sinθ/cosθ = (5/13)/(-12/13) =-5/12,即tanθ = -5/12。
因为sin2θ+ cos2θ = 1②,把①②联立解得(-7/13 – cosθ)2 + cos2θ = 1 =>2cos2θ + (14/13)cosθ + 49/169 = 1 => 2cos2θ + (14/13)cosθ– 120/169 = 0 => cos2θ + (7/13)cosθ – 60/169 = 0 => 169cos2θ+ 91cosθ – 60 = 0 => (13cosθ + 12)(13cosθ – 5) = 0 => (13cosθ + 12) = 0或者(13cosθ – 5)= 0 => cosθ = -12/13或者5/13(正值舍去),进而sinθ = √(1 – cos2θ) = √(1 – 144/169) = 5/13,所以tanθ = sinθ/cosθ = (5/13)/(-12/13) =-5/12,即tanθ = -5/12。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询