已知椭圆的焦点是F1(-1,0),F2(1,0),点P在以F1,F2为焦点的椭圆C上

且PF1的绝对值,F1F2的绝对值,PF2的绝对值构成等差数列已知椭圆方程是x^2/4+y^2/3=1动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上... 且PF1的绝对值,F1F2的绝对值,PF2的绝对值构成等差数列
已知椭圆方程是x^2/4+y^2/3=1
动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l,求四边形F1MNF1面积S的最大值
展开
那美克龙族
2013-06-06 · TA获得超过4992个赞
知道小有建树答主
回答量:955
采纳率:0%
帮助的人:1119万
展开全部
F1M⊥l,F2N⊥l,F1M∥F2N,l的斜率为k,则F1M,F2N的斜率为-1/k

F1M的方程:x+ky+1=0(点斜式化为一般方程)
F2N的方程:x+ky-1=0
过原点O作OH⊥l,则OH为梯形F1MNF2的中位线
|MN|=|-1-1|/√(k^2+1)=2/√(k^2+1)
|OH|=|k*0-0+m|/√(k^2+1)=|m|/√(k^2+1)
四边形F1MNF2面积S=|OH|·|MN|=2|m|/(k^2+1)

直线l:y=kx+m与椭圆C有且仅有一个公共点,y=kx+m带入椭圆方程得:

(4k^2+3)x^2+8kmx+4m^2-12=0
Δ=64k^2m^2-4(4k^2+3)(4m^2-12)=0
m^2=4k^2+3

S^2=4m^2/(k^2+1)=4(4k^2+3)/(k^2+1)=16/(k^2+1)-4/(k^2+1)^2
设u=1/(k^2+1),0<u≤1
S^2=16u-4u^2=-4(u-2)^2+16
u=1时,取最大值S^2=12,S(max)=2√3
追问
S^2=4m^2/(k^2+1)?分母不要平方吗?不过我后面用均值不等式求出来了谢谢你
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式