三角函数积分公式大全
推荐于2018-03-11 · 知道合伙人教育行家
关注
展开全部
∫sin x dx = -cos x + C
∫ cos x dx = sin x + C
∫tan x dx = ln |sec x | + C
∫cot x dx = ln |sin x | + C
∫sec x dx = ln |sec x + tan x | + C
∫csc x dx = ln |csc x – cot x | + C
∫sin ²x dx =1/2x -1/4 sin 2x + C
∫ cos ²x dx = 1/2+1/4 sin 2x + C
∫ tan²x dx =tanx -x+ C
∫ cot ²x dx =-cot x-x+ C
∫ sec ²x dx =tanx + C
∫ csc ²x dx =-cot x+ C
∫arcsin x dx = xarcsin x+√(1-x²)+C
∫arccosx dx = xarccos x-√(1-x²)+C
∫arctan x dx = xarctan x-1/2ln(1+x²)+C
∫arc cot x dx =xarccot x+1/2ln(1+x²)+C
∫arcsec xdx =xarcsec x-ln│x+√(x²-1)│+C
∫arccsc x dx =xarccsc x+ln│x+√(x²-1)│+C
∫ cos x dx = sin x + C
∫tan x dx = ln |sec x | + C
∫cot x dx = ln |sin x | + C
∫sec x dx = ln |sec x + tan x | + C
∫csc x dx = ln |csc x – cot x | + C
∫sin ²x dx =1/2x -1/4 sin 2x + C
∫ cos ²x dx = 1/2+1/4 sin 2x + C
∫ tan²x dx =tanx -x+ C
∫ cot ²x dx =-cot x-x+ C
∫ sec ²x dx =tanx + C
∫ csc ²x dx =-cot x+ C
∫arcsin x dx = xarcsin x+√(1-x²)+C
∫arccosx dx = xarccos x-√(1-x²)+C
∫arctan x dx = xarctan x-1/2ln(1+x²)+C
∫arc cot x dx =xarccot x+1/2ln(1+x²)+C
∫arcsec xdx =xarcsec x-ln│x+√(x²-1)│+C
∫arccsc x dx =xarccsc x+ln│x+√(x²-1)│+C
来自:求助得到的回答
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询