求函数y=(3--sinx)/(2--cosx)的值域 (过程详细点) 20
2个回答
展开全部
sinx-ycosx=3-2y变为
3-2y=sinx-ycosx
=√ (1+y²)[√ 1/(1+y²)]sinx-[y/√ (1+y²)]cosx
=√ (1+y²)sin(x- α) —— sinα=y/√ (1+y²),cosα=√ 1/(1+y²)
因为 |sin(x- α)|= ≤1
所以 |√ (1+y²)sin(x- α)|≤√ (1+y²)
所以有不等式
|3-2y | ≤√ (1+y²)
解此不等式得
2-2√ 3/3≤y≤2+2√ 3/3
因此 函数y=(3-sinx)/(2-cosx)的值域是
y∈[2-2√ 3/3,2+2√ 3/3]
3-2y=sinx-ycosx
=√ (1+y²)[√ 1/(1+y²)]sinx-[y/√ (1+y²)]cosx
=√ (1+y²)sin(x- α) —— sinα=y/√ (1+y²),cosα=√ 1/(1+y²)
因为 |sin(x- α)|= ≤1
所以 |√ (1+y²)sin(x- α)|≤√ (1+y²)
所以有不等式
|3-2y | ≤√ (1+y²)
解此不等式得
2-2√ 3/3≤y≤2+2√ 3/3
因此 函数y=(3-sinx)/(2-cosx)的值域是
y∈[2-2√ 3/3,2+2√ 3/3]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询