1+1/2+1/3+……1/n等于? 20

佼翠佛rR
2013-06-06 · TA获得超过1.1万个赞
知道小有建树答主
回答量:1235
采纳率:100%
帮助的人:498万
展开全部
授人以渔不如教人以鱼,解这样的题关键还是要有思路,不能向上面的人只给答案,将来你还是会遇到问题。思路如下:

定义1:自然数的倒数组成的数列,称为调和数列.   定义2:若数列{an}满足1/a(n+1)-1/an=d(n∈N*,d为常数),则称数列{an}调和数列   人们已经研究它几百年了.但是迄今为止没有能得到它的求和公式只是得到它的近似公式(当n很大时):   1+1/2+1/3+......+1/n≈lnn+C(C=0.57722......称作欧拉初始,专为调和级数所用,至今不知是有理数还是无理数)   人们倾向于认为它没有一个简洁的求和公式.   但是,不是因为它是发散的,才没有求和公式.相反的,例如等差数列是发散的,公比的绝对值大于1的等比数列也是发散的,它们都有求和公式.   当n→∞时   1+1/2+1/3+1/4+ … +1/n   这个级数是发散的。简单的说,结果为∞   ------------------   用高中知识也是可以证明的,如下:   1/2≥1/2   1/3+1/4>1/2   1/5+1/6+1/7+1/8>1/2   ……   1/[2^(k-1)+1]+1/[2^(k-1)+2]+…+1/2^k>[2^(k-1)](1/2^k)=1/2   对于任意一个正数a,把a分成有限个1/2   必然能够找到k,使得   1+1/2+1/3+1/4+ … +1/2^k>a   所以n→∞时,1+1/2+1/3+1/4+ … +1/n→∞

请尊重彼此,及时采纳答案!目不识丁丁在这里祝你学习进步!!!
如果本题有什么不明白可以追问,如果满意记得采纳如果有其他问题请采纳本题后另发点击向我求助,答题不易,请谅解,谢谢。祝学习进步
华瑞RAE一级代理商
2024-04-11 广告
ppbRAE 3000是一款当今市场广谱手持式挥发性有机化合物(VOC)气体检测仪,pgm7340采用RAE较新的第三代光离子化检测器(PID),提高了检测精度和响应时间,检测范围达到1ppb-10000ppm,通过无线模块可以实现与控制台... 点击进入详情页
本回答由华瑞RAE一级代理商提供
百度网友6faba86
2013-06-06 · TA获得超过1.1万个赞
知道小有建树答主
回答量:266
采纳率:0%
帮助的人:104万
展开全部
这是调和级数,没有通项公式,有近似公式
1+1/2+1/3+……+1/n=lnn
ln是自然对数,
当n 趋于无穷时,
1+1/2+1/3+……+1/n=lnn+R
R为欧拉常数,约为0.5772.
推理查看百科上有,不知道你能不能看懂
1665年牛顿在他的著名著作《流数法》中推导出第一个幂级数

ln(1+x) = x - x2/2 + x3/3 - ...

Euler(欧拉)在1734年,利用Newton的成果,首先获得了调和级数有限多项和的值。结果是:

1+1/2+1/3+1/4+...+1/n= ln(n+1)+r(r为常量)

他的证明是这样的:
根据Newton的幂级数有:

ln(1+1/x) = 1/x - 1/2x^2 + 1/3x^3 - ...
于是:
1/x = ln((x+1)/x) + 1/2x^2 - 1/3x^3 + ...
代入x=1,2,...,n,就给出:
1/1 = ln(2) + 1/2 - 1/3 + 1/4 -1/5 + ...
1/2 = ln(3/2) + 1/2*4 - 1/3*8 + 1/4*16 - ...
......
1/n = ln((n+1)/n) + 1/2n^2 - 1/3n^3 + ...
相加,就得到:
1+1/2+1/3+1/4+...1/n = ln(n+1) + 1/2*(1+1/4+1/9+...+1/n^2) - 1/3*(1+1/8+1/27+...+1/n^3) + ......
后面那一串和都是收敛的,我们可以定义
1+1/2+1/3+1/4+...1/n = ln(n+1) + r
Euler近似地计算了r的值,约为0.577218。这个数字就是后来称作的欧拉常数。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
末路英雄123b83f6ac
2013-06-06 · TA获得超过5599个赞
知道大有可为答主
回答量:3416
采纳率:100%
帮助的人:2052万
展开全部
等于无穷大
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式