圆C:(x-3)^2+(y-4)^2=1,点A(-1,0)B(1,0),P为圆上动点,求d=PA^2+PB^2最大值,最小值以及对应的P点坐标
1个回答
2013-06-07
展开全部
由题意:利用圆的参数方程,设P(3+cost,4+sint)
PA^2+PB^2=(4+cost)^2+(4+sint)^2 + (2+cost)^2+(4+sint)^2
= 54+12cost+16sint
=54+20*(3/5 *cost +4/5 *sint)
令sinu=3/5,cosu=4/5
原式=54+20sin(u+t)
PA^2+PB^2最小值为34
此时sint=-0.8,cost=-0.6,P(12/5,16/5)
PA^2+PB^2最大值为74
此时 sint=0.8,cost=0.6,P(19/5,23/5)
PA^2+PB^2=(4+cost)^2+(4+sint)^2 + (2+cost)^2+(4+sint)^2
= 54+12cost+16sint
=54+20*(3/5 *cost +4/5 *sint)
令sinu=3/5,cosu=4/5
原式=54+20sin(u+t)
PA^2+PB^2最小值为34
此时sint=-0.8,cost=-0.6,P(12/5,16/5)
PA^2+PB^2最大值为74
此时 sint=0.8,cost=0.6,P(19/5,23/5)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询