抽签时,先抽和后抽的人概率一样吗
展开全部
一般情况下来说按照固定的抽签规则,先抽和后抽的人的概率是一样的。
正确使用词语,可以让这一类抽签规则的表达,以及整一个过程的规范化更加标准,给人清晰明了的指导。
正确使用词语需要注意以下分析:
(一)从词语的感情色彩方面进行辨析
色彩是指词义附带的某种倾向、情调;有的表现为感情上的,叫感情色彩。
根据感情色彩的不同可将词语分为褒义词、贬义词、中性词三类。
1.褒义词:具有肯定或赞许的感情的词语。如:鼓励、成果、抵御、聪明、节俭、呵护。
2.贬义词:具有否定或贬斥的感情的词语。如:煽动、后果、抗拒、狡猾、吝啬、庇护。
3.中义词:不表示褒贬的词语。如:鼓动、结果、抵抗。
(二)从词语的语体色彩方面进行辨析
词语除感情色彩之外,还有庄重和诙谐、谦敬和讽刺、委婉和直露以及文白、雅俗等色彩,虽然意义相同或相近,但各适用于不同场合,称之为语体色彩。
主要表现为口语和书面语的区别。对话、文艺作品多用口语,口语具有通俗朴实生动的风格。书面语有文雅、庄重的风格,多用于郑重场合、理论文章或公文。
如:“表彰—表扬”、“贵宾—客人”、“陪同—陪伴”、“散步—溜达”、“马铃薯—土豆”,这几组词语义同而语体色彩不同,前者属于书面语,后者属于口语,使用时适合不同的场合。
语体色彩还有庄重和诙谐、谦敬和讽刺、委婉和直露等的不同。如不带感情色彩,用于与自己不亲近的人;而“逝世”则用于自己尊敬的对象。
“嘱咐”多用于临别场合,语气态度恳切;而“吩咐”多用于并不远离的对象,带有命令口气。
(三)从词语的意义方面辨析
1.词义涵盖的范围不同。
如:“开垦、开拓、开辟”都有“开发”之意,但“开垦”指用力把荒芜的土地开发为可耕种的土地;
“开拓”指在原来开发的基础上加以扩充;而“开辟”着重指新开发、新开创,词义范围较大。
2.词义侧重点不同。
如:“才能”和“才华”,都含有能力、特长的意思,但“才能”着重指办事的能力或对知识、技能、技巧的运用能力,
而“才华”则着重指在文学艺术方面显露出来的智慧与特长
正确使用词语,可以让这一类抽签规则的表达,以及整一个过程的规范化更加标准,给人清晰明了的指导。
正确使用词语需要注意以下分析:
(一)从词语的感情色彩方面进行辨析
色彩是指词义附带的某种倾向、情调;有的表现为感情上的,叫感情色彩。
根据感情色彩的不同可将词语分为褒义词、贬义词、中性词三类。
1.褒义词:具有肯定或赞许的感情的词语。如:鼓励、成果、抵御、聪明、节俭、呵护。
2.贬义词:具有否定或贬斥的感情的词语。如:煽动、后果、抗拒、狡猾、吝啬、庇护。
3.中义词:不表示褒贬的词语。如:鼓动、结果、抵抗。
(二)从词语的语体色彩方面进行辨析
词语除感情色彩之外,还有庄重和诙谐、谦敬和讽刺、委婉和直露以及文白、雅俗等色彩,虽然意义相同或相近,但各适用于不同场合,称之为语体色彩。
主要表现为口语和书面语的区别。对话、文艺作品多用口语,口语具有通俗朴实生动的风格。书面语有文雅、庄重的风格,多用于郑重场合、理论文章或公文。
如:“表彰—表扬”、“贵宾—客人”、“陪同—陪伴”、“散步—溜达”、“马铃薯—土豆”,这几组词语义同而语体色彩不同,前者属于书面语,后者属于口语,使用时适合不同的场合。
语体色彩还有庄重和诙谐、谦敬和讽刺、委婉和直露等的不同。如不带感情色彩,用于与自己不亲近的人;而“逝世”则用于自己尊敬的对象。
“嘱咐”多用于临别场合,语气态度恳切;而“吩咐”多用于并不远离的对象,带有命令口气。
(三)从词语的意义方面辨析
1.词义涵盖的范围不同。
如:“开垦、开拓、开辟”都有“开发”之意,但“开垦”指用力把荒芜的土地开发为可耕种的土地;
“开拓”指在原来开发的基础上加以扩充;而“开辟”着重指新开发、新开创,词义范围较大。
2.词义侧重点不同。
如:“才能”和“才华”,都含有能力、特长的意思,但“才能”着重指办事的能力或对知识、技能、技巧的运用能力,
而“才华”则着重指在文学艺术方面显露出来的智慧与特长
展开全部
今天我们来讨论一个数学问题,抽签的先后是否会影响你抽签的结果呢?
快来看看答案吧!
生活中有一个需要用到概率知识的常见局面:比较少的东西要分给比较多的人,比如把3张电影票分给5个人,由于不够分,只好用抽签的形式分配。一个显然的问题是:先抽和后抽的中签机会均等么?
答案是:均等,不管谁先抽都是公平的。
我们索性用一个一般情况来证明。假设总共有n个签,而其中m个是“中”的。第一个人抽中的机会显然是m/n。那么第二个人抽中的概率怎么计算呢?
我们知道从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法;而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
抽签的先后顺序与结果无关
使用类似的办法可以证明,此后每一个人中签的机会都是m/n。
其实这个问题还有更简单的想法。不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。
快来看看答案吧!
生活中有一个需要用到概率知识的常见局面:比较少的东西要分给比较多的人,比如把3张电影票分给5个人,由于不够分,只好用抽签的形式分配。一个显然的问题是:先抽和后抽的中签机会均等么?
答案是:均等,不管谁先抽都是公平的。
我们索性用一个一般情况来证明。假设总共有n个签,而其中m个是“中”的。第一个人抽中的机会显然是m/n。那么第二个人抽中的概率怎么计算呢?
我们知道从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法;而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
抽签的先后顺序与结果无关
使用类似的办法可以证明,此后每一个人中签的机会都是m/n。
其实这个问题还有更简单的想法。不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
是的,我来计算一下,比如4个签一个中奖
首先第一人,四分之一没话说
第二个人,(1-0.25)*(三分之一)
很明显,继续算第三个人的也是一样的,都是四分之一
首先第一人,四分之一没话说
第二个人,(1-0.25)*(三分之一)
很明显,继续算第三个人的也是一样的,都是四分之一
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
抽签时,先抽和后抽的人概率问题是一个教科书范例级的古典概率论问题了。答案是:取决于先抽的人抽中签之后是不是马上打开看。如果先抽的人抽签之后并不马上打开看,而是等所有人都抽完之后再打开,那么先抽和后抽的人抽中某个签的概率是一样的。反之,如果先抽的人抽签之后马上打开看,那么后抽的人抽中某个签的概率就变了,因为这个时候,后抽的人抽中某签的概率成了在给定“先抽的人抽过签”这个条件之后的“条件概率”。当然,不需要计算,凭直观也能知道,如果先抽的人没有抽中某签,那后抽的人抽中该签的条件概率就提高了;如果先抽的人已经抽中了该签,后抽的人抽中该签的条件概率就是0了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
概率相同,但是掌握在谁手里不一定。极端的例子,两个人,抽两个签。只要第一个人抽完了,后一个人也就确定了不用抽了,两个人的概率都是1/2。只不过这个概率都是第一个人产生的,第二个人中不中取决于第一个人的手是不是臭。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询