什么是短除法?

 我来答
yw000123456

推荐于2018-12-07 · TA获得超过2.6万个赞
知道大有可为答主
回答量:1.8万
采纳率:81%
帮助的人:2403万
展开全部

短除法是求最大公因数的一种方法,也可用来求最小公倍数

求几个数最大公因数的方法,开始时用观察比较的方法,即:先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数。后来,使用分解质因数法来分别分解两个数的因数,再进行运算。之后又演变为短除法。短除法运算方法是先用一个除数除以能被它除尽的一个质数,以此类推,除到商是质数为止

基本方法

公约数和公倍数

公约数和公倍数

短除符号就是除号倒过来。短除就是在除法中写除数的地方写两个数共有的质因数,然后落下两个数被公有质因数整除的商,之后再除,以此类推,直到结果互质为止(两个数互质)。

而在用短除计算公倍数数时,对其中任意两个数存在的因数都要算出,其它没有这个因数的数则原样落下。直到剩下每两个都是互质关系。

最大公约数便乘一边,求最小公倍数便乘一圈。

(公约数:亦称“公因数”。是几个整数同时均能整除的整数。如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;公约数中最大的称为最大公约数。)

基础知识

如果数a能被数b整除,a就叫做b的倍数,b就叫做a的因数。因数和倍数都表示一个数与另一个数的关系,不能单独存在。如只能说16是某数的倍数,2是某数的因数,而不能孤立地说16是倍数,2是因数。
"倍"与"倍数"是不同的两个概念,"倍"是指两个数相除的商,它可以是整数、小数或者分数。"倍数"只是在数的整除的范围内,相对于"约数"而言的一个数字的概念,表示的是能被某一个自然数整除的数,它必须是一个自然数。
几个自然数,公有的因数,叫做这几个数的公因数;其中最大的一个,叫做这几个数的最大公因数。例如:12、16的公约数有1、2、4,其中最大的一个是4,4是12与16的最大公约数,一般记为(12、16)=4。12、15、18的最大公约数是3,记为(12、15、18)=3。
几个自然数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小的一个,叫做这几个数的最小公倍数。例如:4的倍数有4、8、12、16,……,6的倍数有6、12、18、24,……,4和6的公倍数有12、24,……,其中最小的是12,一般记为[4、6]=12。12、15、18的最小公倍数是180。记为[12、15、18]=180。

分解质因数法

把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是
这几个数的最大公约数。例如:求24和60的最大公约数,先分解质因数,得24=2×2×2×3,60=2×2×3×5,24与60的全部公有的质因数是2、2、3,它们的积是2×2×3=12,
所以,(24、60)=12。
把几个数先分别分解质因数,再把各数中的全部公有的质因数和独有的质因数提取出来连乘,所得的积就是这几个数的最小公倍数。例如:求6和15的最小公倍数。先分解质因数,得6=2×3,15=3×5,6和15的全部公有的质因数是3,6独有质因数是2,15独有的质因数是5,2×3×5=30,30里面包含6的全部质因数2和3,还包含了15的全部质因数3和5,且30是6和15的公倍数中最小的一个,所以[6,15]=30。

短除法

短除法求最大约数,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然
后把所有的除数连乘起来,所得的积就是这几个数的最大公约数。例如,求24、48、60的最大公约数。
(24、48、60)=2×3×2=12
短除法求最小公倍数,先用这几个数的公约数去除每一个数,再用部分数的公约数去除,并把不能整除的数移下来,一直除到所有的商中每两个数都是互质的为止,然后把所有的除数和商连乘起来,所得的积就是这几个数的最小公倍数,例如,求12、15、18的最小公倍数。
(12、15、18)=3×2×2×5×3=180
无论是短除法,还是分解质因数法,在质因数较大时,都会觉得困难。这时就需要用新的方法。

举例说明

例如:求12与18的最大公因数。以下如有约数出现则为因数

短除法例题

12的因数有:1、2、3、4、6、12。

18的因数有:1、2、3、6、9、18。

12与18的公因数有:1、2、3、6。

12与18的最大公因数是6。

这种方法对求两个以上数的最大公因数数,特别是数目较大的数,显然是不方便的。于是又采用了给每个数分别分解质因数的方法。

12=2×2×3

18=2×3×3

12与18都可以分成几种形式不同的乘积,但分成质因数连乘积就只有以上一种,而且不能再分解了。所分出的质因数无疑都能整除原数,因此这些质因数也都是原数的因数。从分解的结果看,12与18都有公因数2和3,而它们的乘积2×3=6,就是 12与18的最大公因数。

采用分解质因数的方法,也是采用短除的形式,只不过是分别短除,然后再找公约数和最大公约数。如果把这两个数合在一起短除,则更容易找出公约数和最大公约数。

从短除中不难看出,12与18都有公约数2和3,它们的乘积2×3=6就是12与18的最大公约数。与前边分别分解质因数相比较,可以发现:不仅结果相同,而且短除法竖式左边就是这两个数的公共质因数,而两个数的最大公约数,就是这两个数的公共质因数的连乘积。

实际应用中,把需要计算的两个或多个数放置在一起,然后进行短除。

豆漠义友珊
2019-07-31 · TA获得超过3764个赞
知道大有可为答主
回答量:3011
采纳率:24%
帮助的人:245万
展开全部
短除法:

短除法是求最大公约数的一种方法,也可用来求最小公倍数。求几个数最大公约数的方法,开始时用观察比较的方法,即先把每个数的约数找出来,然后再找出公约数,最后在公约数中找出最大公约数。

短除符号就是除号倒过来。短除就是在除法中写除数的地方写两个数共有的质因数,然后落下两个数被公有质因数整除的商,之后再除,以此类推,直到结果互质为止(两两互质)。
而在用短除计算多个数时,对其中任意两个数存在的因数都要算出,其它没有这个因数的数则原样落下。直到剩下每两个都是互质关系。
求最大公约数便乘一边,求最小公倍数便乘一半。

在用短除计算多个数时,对其中任意两个数存在的因数都要算出,其它没有这个因数的数则原样落下。直到剩下每两个都是互质关系。求最大公约数便乘一边,求最小公倍数便乘一半。这种方法对求两个以上数的最大公因数,特别是数目较大的数,显然是不方便的。于是又采用了给每个数分别分解质因数的方法。

例如:求12与18的最大公约数。
短除法例题:
12的约数有:1、2、3、4、6、12
18的约数有:1、2、3、6、9、18
12与18的公约数有:1、2、3、6。
12与18的最大公约数是6。

这种方法对求两个以上数的最大公约数,特别是数目较大的数,显然是不方便的。于是又采用了给每个数分别分解质因数的方法。

12=2×2×3
18=2×3×3

12与18都可以分成几种形式不同的乘积,但分成质因数连乘积就只有以上一种,而且不能再分解了。所分出的质因数无疑都能整除原数,因此这些质因数也都是原数的约数。从分解的结果看,12与18都有公约数2和3,而它们的乘积2×3=6,就是
12与18的最大公约数。

采用分解质因数的方法,也是采用短除的形式,只不过是分别短除,然后再找公约数和最大公约数。如果把这两个数合在一起短除,则更容易找出公约数和最大公约数。

从短除中不难看出,12与18都有公约数2和3,它们的乘积2×3=6就是12与18的最大公约数。与前边分别分解质因数相比较,可以发现:不仅结果相同,而且短除法竖式左边就是这两个数的公共质因数,而两个数的最大公约数,就是这两个数的公共质因数的连乘积。

实际应用中,是把需要计算的两个或多个数放置在一起,进行短除。
在计算多个数的最小公倍数时,对其中任意两个数存在的约数都要算出,其它无此约数的数则原样落下。最后把所有约数和最终剩下无法约分的数连乘即得到最小公倍数。

例如:(短除法)

70和50的最大公因数,用短除法。

5
l
70
50

—————
2
l
14
10

—————

7

5

①70和50的最大公因数是:2x5=10
②70和50的最小公倍数是:2x5x5x7=350
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
我是大角度
高粉答主

2016-12-11 · 学会学习,学会运动,学会自我保养
我是大角度
采纳数:56459 获赞数:499062

向TA提问 私信TA
展开全部
短除法是求最大公因数的一种方法,也可用来求最小公倍数。
求几个数最大公因数的方法,使用分解质因数法来分别分解两个数的因数,再进行运算。之后又演变为短除法,一起用质数除,最后再整理。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
JANE_IVY_A
2018-02-23
知道答主
回答量:4
采纳率:0%
帮助的人:3770
展开全部
短除法是求最大公因数的一种方法,也可用来求最小公倍数。求几个数最大公因数的方法,开始时用观察比较的方法,即:先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数。后来,使用分解质因数法来分别分解两个数的因数,再进行运算。之后又演变为短除法。短除法运算方法是先用一个除数除以能被它除尽的一个质数,以此类推,除到商是质数为止。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
纸纯2004
2018-03-15
知道答主
回答量:17
采纳率:0%
帮助的人:1.4万
展开全部
将两个或几个数放在一起并得出他们共同的因数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(12)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式