已知{an}是等差数列,其前n项和为sn,{bn}是等比数列,且a1=b1=1,a4+b4=-20,s4-b4=43.
1个回答
展开全部
设an = 1+ d(n-1) bn = q^(n-1)
a4+b4 = 1+3d+q^3 = -20
San = (1+1+d(n-1))*n/2 =>S4= 4+6d
S4 - b4 = 4+6d - q^3 = 43
综上 d= 2,q=-3
an = 2n-1 bn = (-3)^(n-1)
an*bn = 2n*(-3)^(n-1) - (-3^(n-1)) = A - B
B 的前n项和为等比数列前n项和
http://zhidao.baidu.com/question/451110477.html
a4+b4 = 1+3d+q^3 = -20
San = (1+1+d(n-1))*n/2 =>S4= 4+6d
S4 - b4 = 4+6d - q^3 = 43
综上 d= 2,q=-3
an = 2n-1 bn = (-3)^(n-1)
an*bn = 2n*(-3)^(n-1) - (-3^(n-1)) = A - B
B 的前n项和为等比数列前n项和
http://zhidao.baidu.com/question/451110477.html
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询