△ABC中,A,B,C,的对边分别是a,b,c,已知3/2sin2A=sinCcosB+sinBcosC a=1,cosB+cosC=2根号3/3,求c
2个回答
展开全部
sinA= sin(180°-B-C)=sin(B+C)=sinCcosB+sinBcosC=3/2sin2A=3sinAcosA
cosA=1/3
sinA=2√2/3 根据: (sinA)^2+(cosA)^2=1
sinC=csinA/a=(2√2 c )/3 根据:sinA/a= sinC/c a=1
cosC=√(9-8c^2) /3 根据: (sinA)^2+(cosA)^2=1
cosB+cosC=2√3/3,B=180°-(A+C)
cosC- cos(A+C)= 2√3/3
cosC- cosAcosC+sinAsinC= 2√3/3
2cosC/3+c(sinA)^2=2√3/3
将sinA,cosC代入上式,并化简:
4c^2-4√3c+3=0
c=√3/2
cosA=1/3
sinA=2√2/3 根据: (sinA)^2+(cosA)^2=1
sinC=csinA/a=(2√2 c )/3 根据:sinA/a= sinC/c a=1
cosC=√(9-8c^2) /3 根据: (sinA)^2+(cosA)^2=1
cosB+cosC=2√3/3,B=180°-(A+C)
cosC- cos(A+C)= 2√3/3
cosC- cosAcosC+sinAsinC= 2√3/3
2cosC/3+c(sinA)^2=2√3/3
将sinA,cosC代入上式,并化简:
4c^2-4√3c+3=0
c=√3/2
展开全部
△ABC中,A、B、C的对边分别是a、b、c;已知(3/2)sin2A=sinCcosB+sinBcosC, a=1,
cosB+cosC=2(√3)/3,求c.
解:由(3/2)sin2A=sinCcosB+sinBcosC,得3sinAcosA=sin(B+C)=sin(180º-A)=sinA
故有3sinAcosA-sinA=(3cosA-1)sinA=0,因为sinA≠0,故必有3cosA-1=0,即有cosA=1/3;
sinA=√(1-1/9)=2(√2)/3;sin(A/2)=√[(1-cosA)/2]=√[(1-1/3)/2]=√(1/3)=√3/3;
又cosB+cosC=2cos[(B+C)/2]cos[(B-C)/2]
=2cos[(180º-A)/2]cos[(B-C)/2]
=2sin(A/2)cos[(B-C)/2]【代入sin(A/2)=√3/3】
=(2√3/3)cos[(B-C)/2]=2(√3)/3
∴cos[(B-C)/2]=1,故得(B-C)/2=0,即有B=C,
故C=(1/2)(180º-A)=90º-A/2,∴sinC=sin(90º-A/2)=cos(A/2)=√[1-sin²(A/2)]=√(1-1/3)=√(2/3);
已知a=1,故由正弦定理得c=asinC/sinA=√(2/3)/[2(√2)/3]=(√2)/2.
cosB+cosC=2(√3)/3,求c.
解:由(3/2)sin2A=sinCcosB+sinBcosC,得3sinAcosA=sin(B+C)=sin(180º-A)=sinA
故有3sinAcosA-sinA=(3cosA-1)sinA=0,因为sinA≠0,故必有3cosA-1=0,即有cosA=1/3;
sinA=√(1-1/9)=2(√2)/3;sin(A/2)=√[(1-cosA)/2]=√[(1-1/3)/2]=√(1/3)=√3/3;
又cosB+cosC=2cos[(B+C)/2]cos[(B-C)/2]
=2cos[(180º-A)/2]cos[(B-C)/2]
=2sin(A/2)cos[(B-C)/2]【代入sin(A/2)=√3/3】
=(2√3/3)cos[(B-C)/2]=2(√3)/3
∴cos[(B-C)/2]=1,故得(B-C)/2=0,即有B=C,
故C=(1/2)(180º-A)=90º-A/2,∴sinC=sin(90º-A/2)=cos(A/2)=√[1-sin²(A/2)]=√(1-1/3)=√(2/3);
已知a=1,故由正弦定理得c=asinC/sinA=√(2/3)/[2(√2)/3]=(√2)/2.
更多追问追答
追问
又cosB+cosC=2cos[(B+C)/2]cos[(B-C)/2]
什么道理
追答
三角函数和差化积公式。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询