2个回答
展开全部
解:
令:G(x,y)=x²-xy+y²-1=0
根据隐函数定义:
对上式求关于x的偏导:
G'x=2x-y
对上式求关于y的偏导:
G'y=2y-x
∴
dy/dx
= - G'x/G'y
= (2x-y)/(x-2y)
对z=x²+y²求关于x的偏导
dz/dx
=2x+2y·(dy/dx)
=2x+2y·(2x-y)/(x-2y)
=(2x²-4xy+4xy-2y²)/(x-2y)
=2(x²-y²)/(x-2y)
d²z/dx²
={2[2x-2y·(dy/dx)]·(x-2y)-2(x²-y²)·[1-2(dy/dx)]}/(x-2y)²
={[4x(x-2y)-4y·2(x²-y²)]-2(x²-y²)·[1-2·2(x²-y²)/(x-2y)]}/(x-2y)²
={[4x(x-2y)²-4y·2(x²-y²)(x-2y)]-2(x²-y²)·[1-2·2(x²-y²)]}/(x-2y)³
=(4x³+16xy²-16xy-8yx³+16x²y²+8xy³+16y·y³-2x²-2y²+8x·x³+8yy³-16x²y²)/(x-2y)³
=(4x³+16xy²-16xy-8yx³+8xy³+24y^4-2x²-2y²+8x^4)/(x-2y)³
令:G(x,y)=x²-xy+y²-1=0
根据隐函数定义:
对上式求关于x的偏导:
G'x=2x-y
对上式求关于y的偏导:
G'y=2y-x
∴
dy/dx
= - G'x/G'y
= (2x-y)/(x-2y)
对z=x²+y²求关于x的偏导
dz/dx
=2x+2y·(dy/dx)
=2x+2y·(2x-y)/(x-2y)
=(2x²-4xy+4xy-2y²)/(x-2y)
=2(x²-y²)/(x-2y)
d²z/dx²
={2[2x-2y·(dy/dx)]·(x-2y)-2(x²-y²)·[1-2(dy/dx)]}/(x-2y)²
={[4x(x-2y)-4y·2(x²-y²)]-2(x²-y²)·[1-2·2(x²-y²)/(x-2y)]}/(x-2y)²
={[4x(x-2y)²-4y·2(x²-y²)(x-2y)]-2(x²-y²)·[1-2·2(x²-y²)]}/(x-2y)³
=(4x³+16xy²-16xy-8yx³+16x²y²+8xy³+16y·y³-2x²-2y²+8x·x³+8yy³-16x²y²)/(x-2y)³
=(4x³+16xy²-16xy-8yx³+8xy³+24y^4-2x²-2y²+8x^4)/(x-2y)³
东莞大凡
2024-11-14 广告
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询