∫x/(x+1)(x+2)(x+3) dx 详细过程

 我来答
滚雪球的秘密
高粉答主

2019-05-11 · 醉心答题,欢迎关注
知道大有可为答主
回答量:4152
采纳率:100%
帮助的人:110万
展开全部

∫x/(x+1)(x+2)(x+3)dx=-1/2ln|x+1|+2ln|x+2|-3/2ln|x+3|+C。C为积分常数。

解答过程如下:

把1/(x+1)(x+2)(x+3)写成分数的和差形式:

1/(x+1)(x+2)(x+3)=1/(x+1)[1/(x+2)-1/(x+3)]

=1/[(x+1)(x+2)]-1/[(x+1)(x+3)]

=1/(x+1)-1/(x+2)-1/2[1/(x+1)-1/(x+3)]

=1/[2(x+1)]-1/(x+2)+1/[2(x+3)]

∫x/(x+a)dx=∫[1-a/(x+a)]dx=x-aln|x+a|+C

求不定积分:

∫x/(x+1)(x+2)(x+3)dx

=∫x/[2(x+1)]-x/(x+2)-x/[2(x+3)]dx

=1/2∫x/(x+1)dx-∫x/(x+2)dx+1/2∫x/(x+3)dx

=1/2(x-ln|x+1|)-(x-2ln|x+2|)+1/2(x-3ln|x+3|)+C

=-1/2ln|x+1|+2ln|x+2|-3/2ln|x+3|+C

扩展资料:

分部积分法

不定积分

设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu两边积分,得分部积分公式

∫udv=uv-∫vdu。

称公式为分部积分公式.如果积分∫vdu易于求出,则左端积分式随之得到.

分部积分公式运用成败的关键是恰当地选择u,v

一般来说,u,v 选取的原则是:

1、积分容易者选为v。

2、求导简单者选为u。

例子:∫Inx dx中应设U=Inx,V=x

分部积分法的实质是:将所求积分化为两个积分之差,积分容易者先积分。实际上是两次积分。

有理函数分为整式(即多项式)和分式(即两个多项式的商),分式分为真分式和假分式,而假分式经过多项式除法可以转化成一个整式和一个真分式的和.可见问题转化为计算真分式的积分.

可以证明,任何真分式总能分解为部分分式之和。

小小芝麻大大梦
高粉答主

2019-03-26 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:975万
展开全部

∫x/(x+1)(x+2)(x+3)dx=-1/2ln|x+1|+2ln|x+2|-3/2ln|x+3|+C。C为积分常数。

解答过程如下:

把1/(x+1)(x+2)(x+3)写成分数的和差形式:

1/(x+1)(x+2)(x+3)=1/(x+1)[1/(x+2)-1/(x+3)]

=1/[(x+1)(x+2)]-1/[(x+1)(x+3)]

=1/(x+1)-1/(x+2)-1/2[1/(x+1)-1/(x+3)]

=1/[2(x+1)]-1/(x+2)+1/[2(x+3)]

∫x/(x+a)dx=∫[1-a/(x+a)]dx=x-aln|x+a|+C

求不定积分:

∫x/(x+1)(x+2)(x+3)dx

=∫x/[2(x+1)]-x/(x+2)-x/[2(x+3)]dx

=1/2∫x/(x+1)dx-∫x/(x+2)dx+1/2∫x/(x+3)dx

=1/2(x-ln|x+1|)-(x-2ln|x+2|)+1/2(x-3ln|x+3|)+C

=-1/2ln|x+1|+2ln|x+2|-3/2ln|x+3|+C

扩展资料:

分部积分:

(uv)'=u'v+uv'

得:u'v=(uv)'-uv'

两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx

即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式

也可简写为:∫ v du = uv - ∫ u dv

常用积分公式:

1)∫0dx=c 

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
li1lulu
2017-04-01 · TA获得超过4.9万个赞
知道大有可为答主
回答量:1.7万
采纳率:70%
帮助的人:5196万
展开全部

设t=x+2,
原式=∫(t-2)dt/(t³-t)
=∫dt/(t²-1)-2∫dt/(t³-t)
=(1/2)ln[(t-1)/(t+1)]-∫dt²/[t²(t²-1)]
=(1/2)ln[(x+1)/(x+3)]-∫d(t²-1/2)/[(t²-1/2+1/2)(t²-1/2-1/2)]
=(1/2)ln[(x+1)/(x+3)]-ln[(t²-1/2-1/2)/(t²-1/2+1/2)]+C
=[ln(x+1)]/2-[ln(x+3)]/2-ln(x²+4x+3)+2ln(x+2)+C
公式见下图(21):

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2017-04-01
展开全部
∫x^3/(1+x^2)dx
=∫(x^3+x-x)/(1+x^2)dx
=∫(x^3+x)/(1+x^2)dx-∫x/(1+x^2)dx
=∫xdx-(1/2)∫2x/(1+x^2)dx
=x^2/2-(1/2)ln(1+x^2)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2018-06-07
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式