“合同”是矩阵之间的一种关系.两个n阶方阵A与B叫做合同的,是说存在一个
满秩n阶方阵P,使得P′AP=B.“合同”这种关系,是一种“等价关系”.按照
它可以对n阶方阵的全体进行分类.对于n阶
实对称矩阵而言,
线性代数中有两
个结果.
①每个n阶实对称矩阵,都一定与实
对角矩阵合同,并且此时P也是实的.
②对于一个n阶实对称矩阵A,与它合同的实对角矩阵当然不只一个,(相应的P
也变化).但是这些实对角矩阵的对角元中,正数的个数是一定的(叫A的正惯
性指数),负数的个数也是一定的(叫A的负惯性指数).
结果②就是“惯性定理”.