求证:sin1+sin2+sin3+......+sinn <2
1个回答
展开全部
证明:(1)2sin1(sin1+sin2+sin3+...+sinn)
=cos0-cos2+cos1-cos3+cos2-cos4+...
+cos(n-2)-cosn+cos(n-1)-cos(n+1)
=cos0+cos1-cosn-cos(n+1)
(2)=>S=sin1+sin2+sin3+...+sinn=[cos0+cos1-cosn-cos(n+1)]/2sin1
=>S=[1+cos1-(cosn+cos(n+1))]/[2sin(1/2)*cos(1/2)]
=>S=[2*cos(1/2)*cos(1/2)-2cos(n+1/2)*cos(1/2)]/[2sin(1/2)*cos(1/2)]
=>S=[cos(1/2)-cos(n+1/2)]/sin(1/2)
(3)因为-cos(n+1/2)最大为1
所以[cos(1/2)-cos(n+1/2)]/2sin(1/2)<[cos(1/2)+1]/sin(1/2)
(4)又因为[cos(1/2)+1]/sin(1/2)=1/tg(1/2)
注意到sinx<x<tgx (0<x<pi/2)
所以有1/tg(1/2)<1/(1/2)=2
(5)至此sin1+sin2+sin3+...+sinn=[cos(1/2)-cos(n+1/2)]/sin(1/2)<1/tg(1/2)<2
=cos0-cos2+cos1-cos3+cos2-cos4+...
+cos(n-2)-cosn+cos(n-1)-cos(n+1)
=cos0+cos1-cosn-cos(n+1)
(2)=>S=sin1+sin2+sin3+...+sinn=[cos0+cos1-cosn-cos(n+1)]/2sin1
=>S=[1+cos1-(cosn+cos(n+1))]/[2sin(1/2)*cos(1/2)]
=>S=[2*cos(1/2)*cos(1/2)-2cos(n+1/2)*cos(1/2)]/[2sin(1/2)*cos(1/2)]
=>S=[cos(1/2)-cos(n+1/2)]/sin(1/2)
(3)因为-cos(n+1/2)最大为1
所以[cos(1/2)-cos(n+1/2)]/2sin(1/2)<[cos(1/2)+1]/sin(1/2)
(4)又因为[cos(1/2)+1]/sin(1/2)=1/tg(1/2)
注意到sinx<x<tgx (0<x<pi/2)
所以有1/tg(1/2)<1/(1/2)=2
(5)至此sin1+sin2+sin3+...+sinn=[cos(1/2)-cos(n+1/2)]/sin(1/2)<1/tg(1/2)<2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |