
展开全部
求和【1,+∞】∑(n+1)/2ⁿ
解: S‹n›=2/2¹+3/2²+4/2³+5/2⁴+6/2⁵+.............+n/2ⁿ⁻¹+(n+1)/2ⁿ............(1)
(1/2)S‹n›=2/2²+3/2³+4/2⁴+5/2⁵+6/2⁶+.........+n/2ⁿ + (n+1)/2ⁿ⁺¹..............(2)
(1)-(2)【错项相减】得:
(1/2)S‹n›=1+1/2²+1/2³+1/2⁴+1/2⁵+1/2⁶+.....+1/2ⁿ-(n+1)/2ⁿ⁺¹
=1/2+1/2+1/2²+1/2³+1/2⁴+1/2⁵+1/2ⁿ-(n+1)/2ⁿ⁺¹
=1/2+(1-1/2ⁿ)-(n+1)/2ⁿ⁺¹
故S‹n›=1+2(1-1/2ⁿ)-(n+1)/2ⁿ
故S=n→+∞limS‹n›=n→+∞lim[1+2(1-1/2ⁿ)-(n+1)/2ⁿ]=n→+∞lim{1+2(1-1/2ⁿ)-[1/(2ⁿln2)]}=3.
解: S‹n›=2/2¹+3/2²+4/2³+5/2⁴+6/2⁵+.............+n/2ⁿ⁻¹+(n+1)/2ⁿ............(1)
(1/2)S‹n›=2/2²+3/2³+4/2⁴+5/2⁵+6/2⁶+.........+n/2ⁿ + (n+1)/2ⁿ⁺¹..............(2)
(1)-(2)【错项相减】得:
(1/2)S‹n›=1+1/2²+1/2³+1/2⁴+1/2⁵+1/2⁶+.....+1/2ⁿ-(n+1)/2ⁿ⁺¹
=1/2+1/2+1/2²+1/2³+1/2⁴+1/2⁵+1/2ⁿ-(n+1)/2ⁿ⁺¹
=1/2+(1-1/2ⁿ)-(n+1)/2ⁿ⁺¹
故S‹n›=1+2(1-1/2ⁿ)-(n+1)/2ⁿ
故S=n→+∞limS‹n›=n→+∞lim[1+2(1-1/2ⁿ)-(n+1)/2ⁿ]=n→+∞lim{1+2(1-1/2ⁿ)-[1/(2ⁿln2)]}=3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询