(2,3,3,5,5,6,6)是否是可简单图化的,如果是,请给出两个非同构的简单图,谢啦~ 关于离散数学的问题。

robin_2006
2013-06-10 · TA获得超过3.9万个赞
知道大有可为答主
回答量:1.3万
采纳率:79%
帮助的人:8345万
展开全部
不可简单图化。
这个需要一边分析一边画图。假设7个顶点是a,b,c,d,e,f,g。根据度数之和30,边数是15。既然是简单图,每个顶点的度数都不超过6。
假设顶点a,b的度数是6,则a,b与其余的顶点都相邻,用掉11条边。现在剩下的5个顶点的度数都是2,假设c的度数最终是2,那么d,e,f,g的最终度数是3,3,5,5,还需要度数1,1,3,3,只能用4条边。单独考虑d,e,f,g,用4条边构建度数序列1,1,3,3,这是不可能的,因为1个3度顶点的存在使得另外3个顶点的度数是1,再加一条边构建3度顶点,则有2个点的度数是2,剩下一个1度顶点,所以度数序列只能是1,2,2,3。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式