高数级数敛散性判断

高数级数敛散性判断如图,第359题... 高数级数敛散性判断如图,第3 5 9题 展开
 我来答
百度网友8362f66
2017-02-25 · TA获得超过8.3万个赞
知道大有可为答主
回答量:8690
采纳率:83%
帮助的人:3389万
展开全部
解:(3)题,∵设an=[n/(n+1)]^(n^2),∴lim(n→∞)(an)^(1/n)=lim(n→∞)[n/(n+1)]^n=1/e<1,∴根据柯西判别法/根值审敛法可知,级数∑[n/(n+1)]^(n^2)收敛。

(5)题,设t=√x,则原式=∑[2√x-arctan(√x)]丨(x=0,1/n)=2∑1/n^(1/2)-2∑arctan[1/n^(1/2)]。其中,含有p=1/2<1的p-级数。显然,发散。
(9)题,转化成积分形式判断。设I=∫(2,∞)dx/[x(lnx)^p](p>0), 则级数∑1/[n(lnn)^p]与积分I有相同的敛散性。而,对I,当p=1时,I=ln(lnx)丨(x=2,∞)→∞,发散、当p≠1时,I=[1/(1-p)](lnx)^(1-p)丨(x=2,∞);显然,0<p<1时,(lnx)^(1-p)→∞,发散、p>1时,(lnx)^(1-p)→0,收敛。∴0<p≤1时,级数∑1/[n(lnn)^p]发散;p>1时,级数∑1/[n(lnn)^p]收敛。
供参考。
海阔天空yuqin
2017-02-24 · TA获得超过7468个赞
知道大有可为答主
回答量:1.1万
采纳率:45%
帮助的人:2053万
展开全部
我也刚复习这
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式