高二数学关于椭圆和直线的一道题。求解答~
已知椭圆T:x²/a²+y²/b²=1(a>b>0),直线l1:y=k1x+p交椭圆T于C、D两点,交直线l2:y=k2x于E点,...
已知椭圆T:x²/a²+y²/b²=1(a>b>0),直线l1:y=k1x+p交椭圆T于C、D两点,交直线l2:y=k2x于E点,若k1·k2= -b²/a²,问E是否是CD的中点,若是,请给出证明;若不是,请说明理由。
展开
1个回答
展开全部
已知椭圆T的方程为x^2/a^2+y^2/b^2=1(a>b>0),A(0,b),B(0,-b)和Q(a,0)为T的三个顶点。
设直线l1:y=k1x+p交椭圆T于C,D两点,交直线l2:y=k2x于点E,若k1k2=—b^2/a^2,
证明:E为CD的中点。
证明:椭圆方程:x²/a²+y²/b²=1即b²x²+a²y²=a²b²
将直线y=k1x+p代入椭圆方程,
整理:(a²k1²+b²)x²+2pk1a²x+a²p²-a²b²=0
韦达定理:x1+x2=-2pk1a²/(a²k1²+b²)
设CD中点为G(x,y)
x=(x1+x2)/2=-pk1a²/(a²k1²+b²)
代入直线y=k1x+p,求得y=pb²/(a²k1²+b²)
所以中点G[-pk1a²/(a²k1²+b²),pb²/(a²k1²+b²)]
联立直线y=k2x和y=k1x+p
解得交点E坐标:(p/(k2-k1),k2p/(k2-k1))
因为k1k2=-b²/a²,所以k2=-b²/a²k1
那么点E的横坐标=p/[-b²/(a²k1)-k1]=-pk1a²/(a²k1²+b²)
纵坐标=[-b²/(a²k1)]p/[-b²/(a²k1)-k1]=pb²/(a²k1²+b²)
由此,可知点G和点E的坐标重合
所以点E是CD的中点
证毕。
百度资源。
设直线l1:y=k1x+p交椭圆T于C,D两点,交直线l2:y=k2x于点E,若k1k2=—b^2/a^2,
证明:E为CD的中点。
证明:椭圆方程:x²/a²+y²/b²=1即b²x²+a²y²=a²b²
将直线y=k1x+p代入椭圆方程,
整理:(a²k1²+b²)x²+2pk1a²x+a²p²-a²b²=0
韦达定理:x1+x2=-2pk1a²/(a²k1²+b²)
设CD中点为G(x,y)
x=(x1+x2)/2=-pk1a²/(a²k1²+b²)
代入直线y=k1x+p,求得y=pb²/(a²k1²+b²)
所以中点G[-pk1a²/(a²k1²+b²),pb²/(a²k1²+b²)]
联立直线y=k2x和y=k1x+p
解得交点E坐标:(p/(k2-k1),k2p/(k2-k1))
因为k1k2=-b²/a²,所以k2=-b²/a²k1
那么点E的横坐标=p/[-b²/(a²k1)-k1]=-pk1a²/(a²k1²+b²)
纵坐标=[-b²/(a²k1)]p/[-b²/(a²k1)-k1]=pb²/(a²k1²+b²)
由此,可知点G和点E的坐标重合
所以点E是CD的中点
证毕。
百度资源。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询