大数据行业就业方向有哪些?大数据技术就业岗位有哪些

 我来答
阿离hunnter
高粉答主

2018-12-28 · 一般般嘛哈哈哈哈哈哈
阿离hunnter
采纳数:329 获赞数:193988

向TA提问 私信TA
展开全部

方向:大数据开发方向,数据挖掘、数据分析和机器学习方向,大数据运维和云计算方向

就业岗位:

1、大数据工程师

大数据工程师的话其实包涵了很多,比如大数据开发,测试,运维,挖据等等,各个岗位不同薪资水平也不大相同。总的来说的话它共有6093个岗位在智联招聘上招聘,平均工资也在11643元。

2、Hadoop开发工程师

职位描述:参与优化改进新浪集团数据平台基础服务,参与日传输量超过百TB的数据传输体系优化,日处理量超过PB级别的数据处理平台改进,多维实时查询分析系统的构建优化。

3、大数据研发工程师

职位描述:

构建分布式大数据服务平台,参与和构建公司包括海量数据存储、离线/实时计算、实时查询,大数据系统运维等系统;服务各种业务需求,服务日益增长的业务和数据量。

4、大数据架构师

大数据架构师的招聘岗位有1446个,从招聘的薪资来看,大数据架构师基本薪资都是15K~60K,大数据架构师的薪资可以说是相当可观的,在大数据行业里,大数据架构师的酬劳可以说是领先与其他的,所以大数据架构师对于人才的要求也是比较严格的。

5、大数据分析师

工作职责:根据公司产品和业务需求,利用数据挖掘等工具对多种数据源进行诊断分析,建设征信分析模型并优化,为公司征信运营决策、产品设计等方面提供数据支持;负责项目的需求调研、数据分析、商业分析和数据挖掘模型等,通过对运行数据进行分析挖掘背后隐含的规律及对未来的预测。

幸运的枫阳
高粉答主

2017-10-31 · 关注我不会让你失望
知道顶级答主
回答量:7.1万
采纳率:80%
帮助的人:8664万
展开全部
大数据行业就业方向和职业
:三大方向 ,十大职位。大数据主要的三大就业方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。
十大职位:一、ETL研发;二、Hadoop开发;三、可视化(前端展现)工具开发;四、信息架构开发;五、数据仓库研究;六、OLAP开发;七、数据科学研究;八、数据预测(数据挖掘)分析;九、企业数据管理;十、数据安全研究。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
尚硅谷
2020-03-17 · 挤进尚硅谷,注定你优秀
尚硅谷
"尚硅谷"教育自成立以来,发展迅猛,凭借优秀的教学团队、前沿的课程体系、务实的教育理念,现已成为有口皆碑的IT培训品牌。
向TA提问
展开全部

您好,大数据就业的岗位还是很多的,总结一下主要有7大类:

1、大数据分析师

分为2个方向 偏业务是需要懂一些数据统计、ETL等知识;偏技术就是精通数据建模和算法

2、大数据挖掘师/算法工程师

这个岗位要求较强的编程能力,精通数据建模、机器学习还有算法实现

3、大数据工程师

这里分为Hadoop工程师、Spark工程师、Flink工程师这三大类

4、大数据运维工程师

服务的稳定和不间断地为用户提供优化

5、大数据仓库工程师

负责数据仓库设计、建模、规范以及研发工作

6、大数据产品经理

这个岗位只要是负责大数据产品的规划和落地

7、大数据架构师/资深大数据架构师

这个就是全能的大数据岗位,技术要求是非常全面的,更多的站在架构角度出发

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
尚学堂大数据学院
2020-09-10 · 让人人享有高品质教育
尚学堂大数据学院
向TA提问
展开全部
从近两年大数据方向研究生的就业情况来看,大数据领域的岗位还是比较多的,尤其是大数据开发岗位,目前正逐渐从大数据平台开发向大数据应用开发领域覆盖,这也是大数据开始全面落地应用的必然结果。从2019年的秋招情况来看,大数据开发岗位的数量明显比较多,而且不仅需要研发型人才,也需要应用型人才,所以本科生的就业机会也比较多。
当前大数据技术正处在落地应用的初期,所以此时人才招聘会更倾向于研发型人才,而且拥有研究生学历也更容易获得大厂的就业机会,所以对于当前大数据相关专业的大学生来说,如果想获得更强的岗位竞争力和更多的就业渠道,应该考虑读一下研究生。

读研之后在岗位选择上可以重点考虑一下大数据平台开发,在5G通信的推动下,未来云计算会全面向PaaS和SaaS领域覆盖,这个过程会全面促进大数据平台的发展。另外,由于人工智能平台的陆续推出,对于大数据平台也是一种促进。相比于大数据应用开发岗位来说,大数据平台开发岗位不仅薪资待遇更高,职业生命周期也会更长,而且未来也可以获得更多的发展机会,也会更容易进入云计算、人工智能等领域发展。
对于当前在读的本科生来说,如果不想读研,那么应该从以下三个方面来提升自身的就业竞争力:

第一:提升程序设计能力。动手实践能力对于本科生的就业有非常直接的影响,尤其在当前大数据落地应用的初期,很多应用级岗位还没有得到释放,不少技术团队比较注重学生程序设计能力,所以具备扎实的程序设计基础还是比较重要的。

第二:掌握一定的云计算知识。大数据本身与云计算的关系非常紧密,未来不论是从事大数据开发岗位还是大数据分析岗位,掌握一定的云计算知识都是很有必要的。掌握云计算知识不仅能够提升自身的工作效率,同时也会拓展自身的技术边界。

第三:重视平台知识的积累。产业互联网时代是平台化时代,所以要想提升就业能力应该重视各种开发平台知识的积累,尤其是与行业领域结合比较紧密的开发平台。实际上,大数据和云计算本身就是平台,所以大数据专业的学生在学习平台开发时也会相对顺利一些。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
TK潮物月月
2022-03-16 · 超过274用户采纳过TA的回答
知道小有建树答主
回答量:449
采纳率:0%
帮助的人:13.8万
展开全部

大数据主要的三大就业方向:

  • 大数据系统研发类人才;

  • 大数据应用开发类人才;

  • 大数据分析类人才。

  • 大数据十大就业职位:

    一、ETL研发

    随着数据种类的不断增加,企业对数据整合专业人才的需求越来越旺盛。ETL开发者与不同的数据来源和组织打交道,从不同的源头抽取数据,转换并导入数据仓库以满足企业的需要。

    ETL研发,主要负责将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。

    目前,ETL行业相对成熟,相关岗位的工作生命周期比较长,通常由内部员工和外包合同商之间通力完成。ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL。

    二、Hadoop开发

    Hadoop的核心是HDFS和MapReduce.HDFS提供了海量数据的存储,MapReduce提供了对数据的计算。随着数据集规模不断增大,而传统BI的数据处理成本过高,企业对Hadoop及相关的廉价数据处理技术如Hive、HBase、MapReduce、Pig等的需求将持续增长。如今具备Hadoop框架经验的技术人员是最抢手的大数据人才。

    三、可视化(前端展现)工具开发

    海量数据的分析是个大挑战,而新型数据可视化工具如Spotifre,Qlikview和Tableau可以直观高效地展示数据。

    可视化开发就是在可视开发工具提供的图形用户界面上,通过操作界面元素,由可视开发工具自动生成应用软件。还可轻松跨越多个资源和层次连接您的所有数 据,经过时间考验,完全可扩展的,功能丰富全面的可视化组件库为开发人员提供了功能完整并且简单易用的组件集合,以用来构建极其丰富的用户界面。

    过去,数据可视化属于商业智能开发者类别,但是随着Hadoop的崛起,数据可视化已经成了一项独立的专业技能和岗位。

    四、信息架构开发

    大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。

    五、数据仓库研究

    数据仓库是为企业所有级别的决策制定过程提供支持的所有类型数据的战略集合。它是单个数据存储,出于分析性报告和决策支持的目的而创建。为企业提供需要业务智能来指导业务流程改进和监视时间、成本、质量和控制。

    数据仓库的专家熟悉Teradata、Neteeza和Exadata等公司的大数据一体机。能够在这些一体机上完成数据集成、管理和性能优化等工作。

    六、OLAP开发

    随着数据库技术的发展和应用,数据库存储的数据量从20世纪80年代的兆(M)字节及千兆(G)字节过渡到现在的兆兆(T)字节和千兆兆(P)字节,同时,用户的查询需求也越来越复杂,涉及的已不仅是查询或操纵一张关系表中的一条或几条记录,而且要对多张表中千万条记录的数据进行数据分析和信息综合。联机分析处理(OLAP)系统就负责解决此类海量数据处理的问题。

    OLAP在线联机分析开发者,负责将数据从关系型或非关系型数据源中抽取出来建立模型,然后创建数据访问的用户界面,提供高性能的预定义查询功能。

    七、数据科学研究

    这一职位过去也被称为数据架构研究,数据科学家是一个全新的工种,能够将企业的数据和技术转化为企业的商业价值。随着数据学的进展,越来越多的实际工作 将会直接针对数据进行,这将使人类认识数据,从而认识自然和行为。因此,数据科学家首先应当具备优秀的沟通技能,能够同时将数据分析结果解释给IT部门和业务部门领导。

    总的来说,数据科学家是分析师、艺术家的合体,需要具备多种交叉科学和商业技能。

    八、数据预测(数据挖掘)分析

    营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。

    九、企业数据管理

    企业要提高数据质量必须考虑进行数据管理,并需要为此设立数据管家职位,这一职位的人员需要能够利用各种技术工具汇集企业周围的大量数据,并将数据清洗 和规范化,将数据导入数据仓库中,成为一个可用的版本。然后,通过报表和分析技术,数据被切片、切块,并交付给成千上万的人。担当数据管家的人,需要保证 市场数据的完整性,准确性,唯一性,真实性和不冗余。

    十、数据安全研究

    数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。数据安全研究员还需要具有较强的管理经验,具备运维管理方面的知识和能力,对企业传统业务有较深刻的理解,才能确保企业数据安全做到一丝不漏。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(10)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式