大一高数。空间曲线在某一点的切线和法平面怎么求?
如果为参数曲线形式,就比较简单了,分别求x,y,z对参数t的倒数,将该点的值带入,就得到)该点的切向量,根据点向式和点法式写出切线和法平面。
如果为两平面交线的形式,就稍微复杂一点,需要根据方程组求出z对x和y对x的偏导数,然后写出切向量,再进一步写出切线和法平面。
扩展资料
法平面是数学术语,是指过空间曲线的切点,且与切线垂直的平面,称为法平面。即垂直于虚拟法线的平面。例如,球体的中心为端点的射线,与球面所在的每一切点所在的切面即法平面(法面)。
我们所接触到的空间,大至宇宙,小至细胞,其中都充满着五光十色、变幻纷杂的曲线。诸如太阳系行星的轨道,飞机的航道,盘山蜿蜒的公路,沙发里的弹簧,织物图案花纹,齿轮和凸轮的轮廓,生命遗传物质DNA的双螺旋结构,等等。
DNA的双螺旋结构
在人们接触到的曲线中,最简单的要算是直线和圆了。这些曲线是初等平面几何中讨论的对象。其次较为复杂的曲线是二次曲线,即椭圆、双曲线和抛物线。这些已经在平面解析几何里学习过,讨论的方法是用坐标和一元二次代数方程。
对于更复杂的曲线,仅仅用初等代数一般是不能解决问题的。研究更加一般的光滑曲线的几何性质,微积分则是有力的工具。我们可以用微积分来推导三个刻划一条空间曲线几何性质的基本几何量,就是弧长、曲率和挠率。
参考资料来源:百度百科-法平面
参考资料来源:百度百科-空间曲线
2024-10-13 广告
2017-05-09 · 知道合伙人教育行家
1)如果为参数曲线形式,就比较简单了,分别求x,y,z对参数t的倒数,将该点的值带入,就得到该点的切向量,根据点向式和点法式写出切线和法平面。
2)如果为两平面交线的形式,就稍微复杂一点,需要根据方程组求出z对x和y对x的偏导数,然后写出切向量,再进一步写出切线和法平面