求y=ln(1+√x)/(1-√x)的导数
2个回答
展开全部
y′
=[(1-√x)/(1+√x)][(1+√x)/(1-√x)]′
=[(1-√x)/(1+√x)]{[(1+√x)′(1-√x)-(1+√x)(1-√x)′]/(1-√x)^2}
=[1/(1-x)][(1+√x)′(1-√x)-(1+√x)(1-√x)′]
=[1/(1-x)][(1/2)(1-√x)/√x+(1/2)(1+√x)/√x]
=[1/(1-x)]/√x
=√x/(x-x^2)
=[(1-√x)/(1+√x)][(1+√x)/(1-√x)]′
=[(1-√x)/(1+√x)]{[(1+√x)′(1-√x)-(1+√x)(1-√x)′]/(1-√x)^2}
=[1/(1-x)][(1+√x)′(1-√x)-(1+√x)(1-√x)′]
=[1/(1-x)][(1/2)(1-√x)/√x+(1/2)(1+√x)/√x]
=[1/(1-x)]/√x
=√x/(x-x^2)
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询